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Abstract

Enabling an interactive 3D holodeck poses significant challenges in
the networking of thw swarm, due to the density and latency require-
ments. In this paper, we envision an orchestration mechanism using
visible light communication and dynamic clustering for actuation.
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3D Holodeck. A 3D holodeck [3] is a physical 3D display that
illuminates the shape of an object or a scene of objects. A digital
version of the 3D holodeck is often referred to as a 3D volumetric
hologram, which shows great potential and attracts huge interest
in the augmented reality (AR) and mixed reality (MR) [5-7, 10]
community. Taking a step further, a physical holodeck can not only
bring the virtual hologram into reality, but also enable its interaction
with the real world. For example, two humans can use a 3D holodeck
to play chess, and a humanoid one can assist with household chores.
One approach to envisioning a physical holodeck is to use a
swarm of flying light specks (FLS) [4]. Each FLS is a miniature-
sized drone, equipped with light sources for display, wireless radio
for network, and a microcontroller unit (MCU) for compute. The
swarm of FLSs can be pre-programmed to illuminate either static
shapes, or an animated sequence, similar to many large scale drone
light shows [8], and live hero animation in popular esports games.
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FIGURE 1: Mock-up of an animated sequence [9].
Interactive Holodeck. In addition to static and pre-programmed
dynamic display, the key attraction of a 3D physical holodeck is
its capability to interact with the world. These interactions enable
a variety of novel applications; a real life Pokemon Go game, a
holodeck for any interactive board game (e.g., Jenga, Catan), a home
assistant that can put away stuff as commanded, efc.. The interaction
can be initiated by both the holodeck itself and the outside world; in
the Jenga game, once the human player pushes one block, the whole
block would move along; in the case of home assistant, part of the
holodeck needs to move together to push, pick up, or drop the target.
Orchestration Challenges. Latency. To accomplish the interactions
described above, parts of the holodeck need to be coordinated to
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move together. Such coordination is triggered by arbitrary interaction
thus the reaction and actuation cannot be pre-programmed. The
orchestration of swarms of FLSs needs to happen in real time.

FLS to Orchestrator. 1deally, an orchestrator should have bi-
directional communication with FLSs; for instruction and feedback.
However, due to the density, RF based communication is prone to
severe interference, either among FLSs (inter-FLS for a distributed
orchestrator), or between FLS and a server (uplink for a centralized
orchestrator). Therefore, it is challenging to get FLS feedback.
Orchestrator to FLS. It is not scalable for the orchestrator to give
instructions to each individual FLS. The downlink capacity will
quickly saturate as the number of FLSs increases. In other words, it
is impractical to talk to, in real time at a high frequency, swarms of
FLSs with individual instructions.

System Design. The orchestrator includes three components; Moni-
tor, Instructor, and Physics Simulator.
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FIGURE 3: Mock-
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ing for group instruc-
tions [1].

FIGURE 2: Scalable Holodeck Monitor. An array of high
frequency cameras functioning as VLC receivers to monitor
FLS ID and position.

Monitor. Instead of RF, visible light communication (VLC) provides
a nice alternative for the uplink. Each FLS can modulate their ID
onto their light source such that a high frequency camera can decode
and register each FLS’s location. These locations can be fed back to
the instructor as a reference for the next frame. An array of cameras
can scale up the holodeck, each monitoring a voxel of 3D space
(Figure 2). Though each individual link capacity is low compared
to photo-diode receivers, cameras can establish massive amount of
parallel connections.

Instructor. To simplify downlink instructions, the instructor clusters
FLSs into groups of connected components (Figure 3). Only one
transformation matrix (describing translation, rotation, and scaling)
is given to each group, such that the FLSs in the group can calculate
their destination positions based on current locations. Depending on
the animation granularity, the instructor can use 3D mesh simplifi-
cation methods [2] to segment the holodeck into coarse groups of
large parts or fine-grained groups of detailed components.

Physics Simulator. The orchestrator keeps a digital twin of the
holodeck in the physics simulator. Interactions are simulated in
the digital twin, of which the results are forwarded to the instructor.
The results can guide the instructor on dynamic clustering. For ex-
ample, an external force may break the cluster such that part of the
cluster need to move in a different direction. The physics simulator
can inform the instructor to reconfigure the cluster such that two
separate parts can be transformed differently.
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