
SwarMer: A Decentralized Localization Framework for Flying
Light Specks

Hamed Alimohammadzadeh, Shahram Ghandeharizadeh
Computer Science Department, University of Southern California

Los Angeles, California, USA
{halimoha,shahram}@usc.edu

ABSTRACT
Swarm-Merging, SwarMer, is a decentralized framework to localize
Flying Light Specks (FLSs) to render 2D and 3D shapes. An FLS is a
miniature sized drone equipped with one or more light sources to
generate different colors and textures with adjustable brightness. It
is battery powered, network enabled with storage and processing
capability to implement a decentralized algorithm such as SwarMer.
An FLS is unable to render a shape by itself. SwarMer uses the
inter-FLS relationship effect of its organizational framework to
compensate for the simplicity of each individual FLS, enabling a
swarm of cooperating FLSs to render complex shapes. SwarMer is
resilient to network packet loss, FLSs failing, and FLSs leaving to
charge their battery. It is fast, highly accurate, and scales to remain
effective when a shape consists of a large number of FLSs.

Holodecks Reference Format:
Hamed Alimohammadzadeh, Shahram Ghandeharizadeh. SwarMer: A
Decentralized Localization Framework for Flying Light Specks . Holodecks,
1(1): 10-22, 2023.
doi:10.61981/ZFSH2302

Holodecks Artifact Availability:
SwarMer source code is available at https://github.com/flyinglightspeck/
SwarMer. See https://youtu.be/BIiBxD_aUz8 for a MATLAB demonstra-
tion of SwarMer, https://youtu.be/Lh11tWWOP5Y for two relative local-
ization techniques as SwarMer plugins. SwarMer is able to transition FLSs
from illuminating one point cloud to the next point cloud, see https://
youtu.be/4GhhlSq4UrM. It may start with a random pattern and illuminate
a shape, see https://youtu.be/cZrz0e61txU. The reported implementation
of SwarMer localizes FLSs into a Hat (https://youtu.be/y_xHdz5bs5M), a
Dragon (https://youtu.be/PRyjdmw8NVc), and a Skateboard (https://youtu.
be/a0fFu0z6BU0).

1 INTRODUCTION
An FLS is a miniature sized drone equipped with one or more light
sources to generate different colors and textures with adjustable
brightness. Synchronized swarms of FLSs will illuminate virtual
objects in a pre-specified 3D volume, an FLS display [30, 31]. An
FLS display may be a cuboid that sits on a table or hangs on a wall,
the dashboard of a self-driving vehicle, a room, etc. It will render

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@holodecks.quest. Copyright is held by the owner/author(s). Publication
rights licensed to the Holodecks Foundation.
Proceedings of the Holodecks Foundation, Vol. 1, No. 1.
doi:10.61981/ZFSH2302

static 2D or 3D point clouds by assigning the coordinates of their
points to different FLSs to illuminate.

Localizing FLSs to render a 2D or 3D point cloud is non-trivial
for several reasons. First, in an indoor setting, FLSs may lack line
of sight with GPS satellites to position themselves. Even if GPS was
available, it would be too coarse [30, 47, 71]. The best some GPS
devices claim is a 3 meter accuracy 95% of the time [47, 77].

Second, a dead-reckoning technique that requires an FLS to fly to
its assigned position is known to suffer from errors that increase as
a function of the distance traveled by a drone [13, 14, 18, 73]. Greater
distances result in higher errors, distorting the final rendering. To
illustrate, Figure 1.b shows rendering of three 2D point clouds of
Figure 1.a (ground truth) using dead reckoning with 5 degrees
of error. (See Section 4.1 for a formal definition of the degree of
error.) The FLSs are deployed by a dispatcher at the origin, (0, 0).
Each FLS uses a collision free path [5, 6, 8, 12, 15, 19, 20, 26, 27,
36, 37, 39, 44, 52, 53, 55, 62, 63, 76, 78, 81–84, 99] to travel to its
coordinate. With dead reckoning, the wing of the butterfly farthest
from (closest to) the origin is least (most) accurate because FLSs
travel a greater (shorter) distance. With 5 degrees of error, the
butterfly wing farthest from the origin is distorted completely, see
Figure 1.b. In general, dead reckoning is challenged with realizing
symmetrical geometric shapes as simple as a straight line, e.g., the
cat’s tail which is close to the dispatcher.

The challenge is to design and implement a general purpose
framework that localizes FLSs to render any 2D or 3D shape with
an arbitrary amount of dead-reckoning error. This challenge con-
stitutes the focus of this paper. The ideal framework must satisfy
the following requirements. First, it must be fast by allowing FLSs
to localize as they are deployed. This results in an incremental
rendering where portions of a shape become recognizable as other
FLSs are deployed to render the remainder of the shape. Second,
it should be highly accurate. A rendering should match its point
cloud with 100% precision. With some applications, this may be
overkill because the human eye may not detect one FLS out of
its intended position even with a small point cloud requiring one
hundred FLSs, e.g., compare Figure 1.c with 1.a. Third, it should
be continuous as drones are known to drift [28, 49]. FLSs must be
able to execute the algorithm to compensate for both their drift and
those of their neighbors. Fourth, it should be resilient to FLS failures
and departures. FLSs are battery powered mechanical devices that
may fail [30]. An FLS may fly back to a charging station per an
algorithm such as STAG [31]. The substituting FLS should localize
itself. Fifth, it should scale to render shapes consisting of a large
number of FLSs, tens of thousands if not millions. Finally, it should
be minimal, requiring as few sensors as possible from the display
to enhance its flexibility and reduce its cost.

https://doi.org/10.61981/ZFSH2302
https://github.com/flyinglightspeck/SwarMer
https://github.com/flyinglightspeck/SwarMer
https://youtu.be/BIiBxD_aUz8
https://youtu.be/Lh11tWWOP5Y
https://youtu.be/4GhhlSq4UrM
https://youtu.be/4GhhlSq4UrM
https://youtu.be/cZrz0e61txU
https://youtu.be/y_xHdz5bs5M
https://youtu.be/PRyjdmw8NVc
https://youtu.be/a0fFu0z6BU0
https://youtu.be/a0fFu0z6BU0
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@holodecks.quest
https://doi.org/10.61981/ZFSH2302

Swarm-Merging, SwarMer, addresses these requirements for 2D
and 3D point clouds. It is designed for an in-door 3D display that
lacks line of sight with GPS satellites. It is a relative localization
system instead of an absolute one, e.g., the teapot of Figure 1.c is
moved down relative to its ground truth shown in Figure 1.a. Given
a 2D or 3D point cloud, it approximates the position of the FLSs
by forcing the neighboring FLSs to match the relative distance and
angle [14] of their assigned points. Even though the location of
each FLS is not exactly the same as that specified by the point cloud,
SwarMer’s relative positioning of FLSs produces shapes true to a
point cloud. In some instances, the relative positioning matches the
coordinates of the points in a point cloud exactly.

SwarMer is a decentralized algorithm, requiring each FLS to lo-
calize itself relative to another FLS at a time. Many FLSs may correct
their position concurrently and independently. Hence, SwarMer
may render a portion of a shape while FLSs are being deployed to
complete the rest of the shape. This makes SwarMer fast.

SwarMer constructs swarms [66] of FLSs. Movement of one FLS
causes all FLSs in its swarm to move. SwarMer includes provisions
that prevent local minimums that result in isolated FLSs or frag-
mented swarms when there should be one swarm. Hence, SwarMer
is resilient to FLSs failing and departing to charge their battery.

SwarMer requires FLSs to position themselves relative to one an-
other to render the intended shape with a high accuracy. Figure 1.c
shows localization of FLSs with SwarMer. This positioning uses
dead-reckoning with the same 5 degrees of error. The distance be-
tween FLSs is typically shorter than the distance from the dispatcher
located at the origin. Hence, error with inter-FLS dead-reckoning
decreases, enhancing SwarMer’s accurracy.

Figures 1.d and 1.e show the use of triangulation and trilateration
to localize FLSs. Both are designed for use with anchors that have
precise positions [17, 23, 40, 46, 102], e.g., GPS satellites [70] used by
GPS enabled drones for outdoor light shows. In Figures 1.d and 1.e,
an FLS lacks line of sight with a GPS satellite. It uses those FLSs
with a high confidence in their location as its anchor. The position
of these anchors is not 100% precise. This causes triangulation and
trilateration to produce distorted shapes.
Assumptions of the SwarMer framework about its FLSs are as
follows. First, FLSs are cooperative. Second, an FLS may adjust its
radio range by manipulating its transmission power to communi-
cate with FLSs that are farther away [92]. Third, each FLS has a
unique id, FID. FID may be assigned by the FLS hardware, e.g., MAC
address of its networking card. Alternatively, a dispatcher [31] may
assign an FID to an FLS as it deploys FLSs. Fourth, an FLS knows its
assigned coordinate (point in a point cloud) and the coordinates of
its neighbors. The exact number of known neighbors is a tradeoff
between the amount of storage required from each FLS and the
required communication bandwidth for the FLSs to communicate
with their neighbors and obtain this information from them.
Contributions of this paper are:

• SwarMer as a relative localization framework to render
2D and 3D shapes. A localization technique is a plugin for
the SwarMer framework [3]. This decentralized framework
uses swarm concepts. FLSs may execute SwarMer continu-
ously. To the best of our knowledge SwarMer is novel and
has not appeared elsewhere. (See Section 3.)

Figure 1: (a) A 2D butterfly, cat, and teapot, (b) illuminations
with dead reckoning using 𝜖=5 degrees of error, (c) adjust-
ments with swarm-merging using dead reckoning with 𝜖=5
degrees of error, (d-e) adjustment with Triangulation and
Trilateration using 100% accurate distance and angle.

• We present a MATLAB simulation and a Python 3.9 im-
plementation of SwarMer. We use the simulator to obtain
insights into the alternative design decisions. We also use
it to implement triangulation and trilateration1 as the base

1Both triangulation and trilateration may serve as a localization plugin of the SwarMer
framework. We do not pursue them in this role because a technique of [3] is simpler
and highly accurate.

11

comparison techniques with SwarMer. The emulator im-
plements the most promising designs with adjustable con-
figuration parameters. Its processes use UDP sockets and
we are actively exploring their deployment in a swarm of
drones. (See Sections 5 and 6.)

• We open source our software implementations, and the 2D
and 3D data used in this study for further use by the sci-
entific community. See https://github.com/flslab/SwarMer/
for details.

• A limitation of SwarMer is that it may shift a shape along
different axes. It requires an accurate reference point or an
oracle FLS to address this limitation. (See Section 4.2.2.)

The rest of this paper is organized as follows. Section 2 pro-
vides the terminology used by this paper and a formal statement of
the localization problem. Section 3 presents SwarMer. We evaluate
SwarMer using 2D and 3D point clouds in Section 4 and compare it
with triangulation and trilateration in Section 5. Section 6 presents
an implementation of SwarMer. Related work are described in Sec-
tion 7. Section 8 presents our future research directions.

2 TERMINOLOGY, PROBLEM STATEMENT
Given the novelty of FLSs and a 3D FLS display, this section intro-
duces terminology for concepts in order to state the problem solved
by SwarMer. We use this terminology throughout the paper. The
SwarMer framework is independent of the assumed terminology
and may use alternative ontologies that match the concepts per
definitions provided in this section.

To render an illumination, an FLS display constructs a 3D mesh
on the display volume. A cell of this mesh, a display cell [31], is
dictated by the downwash of an FLS [5, 8, 27, 63, 99]. Assuming
an FLS is a quadrotar, a cell may be an ellipsoid [5, 8, 63] or a
cylinders [27, 99] that results in a larger separation along the height
dimension. Each display cell has a unique Length, Height, andDepth
(L,H,D) coordinate [31]. We use the L, H, D coordinate system
instead of X, Y, Z to identify a cell because there is no consensus
on one definition of the Y and Z axes. While the picture industry
uses the Z axis as the depth, mathematicians use the Y axis for the
depth. It is trivial to map our L, H, D coordinate system to either
definition without ambiguity.

We assume a fixed coordinate system for the FLS display with (0,
0, 0) as its bottom left corner. Moreover, we assume the geometry
of a 3D point cloud identifies the location of a display cell in an
illumination cell. This is the (L,H,D) coordinate of a point assigned
to an FLS to illuminate.

Definition 2.1. Ground truth is the ideal location and orientation
of an FLS in an FLS display. It is dictated by the geometry of a point
cloud, the (L,H,D) coordinates of a point. An FLS is assigned the
coordinates of a point in the ground truth to illuminate.

Definition 2.2. Estimated truth is the actual location and orien-
tation of an FLS in an FLS display. It is an FLS’s estimate of the
ground truth and may match the ground truth with some degree of
accuracy including perfect (100%) accuracy.

Definition 2.3. A vector ®𝑖, 𝑗 exists between any two points 𝑖 and
𝑗 in a point cloud. It has a fixed length | ®𝑖, 𝑗 |. With 2D point clouds,
it has an angle 𝜃 relative to the horizontal L-axis. With 3D point

clouds, in addition to 𝜃 , it has an angle 𝜙 relative to the height,
H-axis, of a display.

Problem Definition 1. Given a 2D (3D) point cloud with each
point assigned to a unique FLS, localize FLSs tominimize the Hausdorff
distance [38] between the estimated truth and the ground truth.

We use the Hausdorff distance [38] to compare the FLS rendering
E, i.e., the estimated truth, with the ground truth G, Hausdorff(E,G)
or HD for short. This metric reports the maximum error in distance
between E and G after applying a translation. A lower value is
better with zero reflecting a perfect match between E and G.

The translation process is required because SwarMer is a relative
localization technique. With the emulator of Section 6, this process
computes the center2 of each point cloud 𝐸 and 𝐺 , 𝐶𝐸 and 𝐶𝐺 ,
respectively. It computes a vector ®𝐷 = 𝐶𝐺 −𝐶𝐸 . Next, it adds ®𝐷 to
each point in the point cloud E. Finally, we compute HD.

3 SWARM-MERGING (SWARMER)
SwarMer is a decentralized algorithm that assumes the error in
dead reckoning decreases when FLSs travel shorter distances. A dis-
patched FLS travels to its assigned destination using dead reckoning.
Once at its destination, SwarMer requires the FLS to localize rela-
tive to its neighbors using dead reckoning repeatedly. This reduces
the travelled distance to enhance the accuracy of dead reckoning,
enabling the FLS to approximate the ground truth more accurately.

As soon as an FLS 𝐹𝑖 arrives at its destination, it constructs a
swarm consisting of itself with its Swarm-ID set to its FID, 𝜉𝑖=𝑖 .
Next, 𝐹𝑖 expands its radio range to identify an FLS 𝐹 𝑗 with a differ-
ent swarm-id, 𝜉𝑖 ≠ 𝜉 𝑗 . 𝐹𝑖 challenges 𝐹 𝑗 to merge into one swarm.
Assuming 𝐹 𝑗 accepts the challenge, the FLS with a lower Swarm-ID
becomes the anchor FLS and the other FLS becomes the localizing
FLS. Assuming 𝜉𝑖 < 𝜉 𝑗 , the localizing FLS, 𝐹 𝑗 , computes a vector ®𝑉
for its movement relative to its anchor 𝐹𝑖 to better approximate the
ground truth. Two techniques to compute ®𝑉 are presented at the
end of this section.

An FLS maintains a status property initialized to available. Its
other possible value is busy. When 𝐹 𝑗 is challenged and its status is
available then it changes its status to busy and notifies the FLSs
that constitute its swarm to change their status to busy. 𝐹𝑖 also
changes its status to busy and informs those FLSs in its swarm to
change their status to busy. Each message includes whether the
swarm is localizing or anchor. 𝐹𝑖 and 𝐹 𝑗 determine this indepen-
dently, by comparing their Swarm-ID, 𝜉𝑖 and 𝜉 𝑗 . With 𝜉𝑖 < 𝜉 𝑗 , in
addition to the busy status change, 𝐹𝑖 ’s (𝐹 𝑗 ’s) message includes the
anchor (localizing) flag.

An available FLS accepts a challenge always. A busy FLS ac-
cepts a challenge only if it is an anchor and its Swarm-ID is lower
than that of a challenger. This FLS will serve as the anchor for the
challenger. An FLS may serve as the anchor for multiple localizing
FLSs beloning to different swarms. Moreover, different FLSs belong-
ing to the same swarm may serve as anchors for multiple localizing
FLSs belonging to different swarms. This enables𝑀 ≥ 2 swarms to
merge into one.

Once 𝐹 𝑗 computes a vector ®𝑉 for its movement relative to 𝐹𝑖 ,
𝐹 𝑗 informs members of its swarm to change their Swarm-ID to
2The center of a point cloud is the average of the coordinates of its points.

12

https://github.com/flslab/SwarMer/

Figure 2: FLSs of different swarms localize concurrently.

𝐹𝑖 ’s Swarm-ID (𝜉𝑖) and move along ®𝑉 . 𝐹 𝑗 changes its Swarm-ID to
𝐹𝑖 ’s Swarm-ID (𝜉𝑖) and moves along ®𝑉 to localize itself relative
to 𝐹𝑖 . Next, it changes its status from busy to available. 𝐹 𝑗 ’s
local movement and status change may occur concurrently with
its message transmission to the members of its swarm. Members
of 𝐹 𝑗 ’s swarm change their Swarm-ID to 𝜉𝑖 , move along ®𝑉 , and
change their status to available independently. Finally, 𝐹 𝑗 notifies
𝐹𝑖 to unanchor itself, enabling it to localize relative to other FLSs.
This completes merging of the 𝐹𝑖 and 𝐹 𝑗 swarms into one with the
participating FLS’s Swarm-ID set to 𝜉𝑖 .

SwarMer localizes FLSs using their nearest neighbor by requiring
an FLS to expand its radio range. FLSs must measure distance and
angle relative to one another to localize. With radio signals such
as Ultra-Wide Band (UWB), the quality of these measurements is
enhanced with shorter distances [14]. If such a limitation does not
exist, an FLS may localize using an arbitrary neighbor.

Definition 3.1. A swarm consists of a collection of FLSs with the
same Swarm-ID 𝜉 . 𝜉 is set to the minimum FID of the FLSs in the
swarm. FLSs that constitute a swarm move together [67, 88].

FLSs belonging to different swarms may localize concurrently.
One or more FLSs of a swarm may serve as the anchor for different
localizing FLSs. Figure 2 shows 10 localizing FLSs (green), their
anchored FLSs (dark blue), members of their swarms (red), and
available FLSs (light blue).

When an FLS expands its radio range, it may encounter𝑀 − 1
FLSs with different Swarm-IDs. The FLS with the lowest Swarm-ID
becomes the anchor while 𝑀 − 1 FLSs localize relative to it. This
merges𝑀 swarms into one. SwarMer may limit the value of M to 2
or higher (∞), e.g., 2 for binary merging of swarms3. The value ∞
merges as many candidates as possible.

SwarMer may use different techniques to select the identity of
the anchor swarm. Thus far, we have described the Lowest Swarm-
ID, a simple technique that uses the FLS with the lowest Swarm-ID
3𝑀=∞ renders a shape accurately faster when compared with𝑀=2 [3]

as the anchor. Amore complex technique is to use the FLS belonging
to the swarm with the most number of FLSs as the anchor FLS. It
may require an FLS to use a decentralized peer-to-peer technique
to estimate the size of its swarm [9]. In case of ties with multiple
swarms having the same size, the one with the lowest Swarm-ID
may serve as the anchor. In [3], we evaluate these four techniques.
Obtained results show while one technique may be superior for a
point cloud, no technique is superior across all point clouds. Hence,
we use the lowest Swarm-ID for the rest of this paper.

With 𝐹 FLSs, the number of rounds performed by SwarMer to
construct one swarm is 𝑙𝑜𝑔 𝐹 . With𝑀=2, the number of rounds is
deterministic. With 𝑀=∞, the base of the log is a function of the
average number of swarms merged in a round. It depends on the
density of the point cloud and how many swarms are merged at a
time. See [3].

Multiple FLSs, say 𝜇, of a swarm may race with one another
to localize relative to different FLSs belonging to different anchor
swarms concurrently. Thus, 𝜇 localizing FLSs generate different
vectors for the FLSs of the localizing swarm. SwarMer ensures an
FLS of the localizing swarm applies at most one vector, discarding
𝜇 − 1 vectors. This partitions the localizing swarm into 𝜇 swarms.
These swarms will subsequently localize relative to one another to
form one swarm. See [3] for details of this race condition.

As swarms merge and form larger swarms, SwarMer saves bat-
tery power of FLSs by requiring only those FLSs with a missing
neighbor to expand their radio range. This saves battery power
of many FLSs by preventing them from expanding their radio
range only to discover FLSs that decline their challenge to merge.
FLSs with no missing neighbors are termed Relatively-Complete,
R-Complete. They wait to be challenged.

SwarMer imposes the following requirement on all FLSs. A
swarm consisting of an FLS with busy neighbors belonging to a
different swarm is required to localize itself relative to one of the
neighbors and join its swarm. This makes SwarMer resilient to FLS
failures and FLSs leaving to charge their battery. In both cases, a
new FLS arrives to substitute for the departing FLS. The require-
ment causes this new FLS to localize and join the existing swarm
immediately. In addition, this requirement prevents formation of
multiple disjoint swarms that should be one with small values of 𝜂.

One may configure SwarMer to localize FLSs continuously. Once
all FLSs constitute one swarm, they may thaw their swarm mem-
bership. Each FLS resets its Swarm-ID to its FID, Swarm-ID=FID.
This forms swarms consisting of one FLS without impacting the po-
sition of each FLS. Next, the FLSs repeat the localization process of
SwarMer. Sections 4.2 and 6 show repeated application of SwarMer
enhances the quality of a rendering, i.e., lowers the Hausdorff dis-
tance. We describe several techniques to thaw the final swarm in a
decentralized manner [3]. One is detailed in Section 6.
Relative Localization: This section describes two techniques for
a localizing FLS to position itself relative to an anchor FLS. They
are plugins for the SwarMer framework and may be implemented
using a variety of techniques described below.

The first technique, Signal Strength (SS), assumes an FLS (a)
has sensors to detect both the angle and the strength of the sig-
nal received from another FLS, and (b) may convert these sen-
sor readings to distance from the FLS generating the signal. One
may consider and evaluate alternative sensors when designing

13

Figure 3: Two localization plug-in techniques for SwarMer.

and implementing SS with FLSs. Bluetooth [58, 89], Wi-Fi [65, 69],
RFID [11, 59, 93, 105], UWB [45, 50, 74], Lidar [21, 75], RGB cam-
eras [10, 60, 75, 103] and infrared [44, 63, 68] may be used to obtain
distance information. The angle information may be obtained by
mounting an antenna array on an FLS, e.g., Bluetooth [86], Wi-
Fi [79]. Angle of Arrival, AOA [96], obtains the angles at which the
signal sent by a localizing FLS reaches the antennas mounted on
an anchor FLS. Several surveys document the alternative sensor
technologies, their strengths and weaknesses [18, 35, 51, 101].

SS requires the localizing FLS to request the anchor FLS to gen-
erate a signal. It uses its sensors to estimate vector ®𝑑 . This vector is
defined using angle 𝛼 relative to the L-axis with distance |d| from
the anchor FLS, Step 1 in Figure 3.a. SS also computes the angle 𝜃
relative to the height H. Next, the localizing FLS uses the ground
truth to calculate vector ®𝐷 . The tail (head) of ®𝐷 is the position of
the localizing (anchor) FLS in the ground truth, Step 2 in Figure 3.a.
We subtract the two vectors to obtain ®𝑉 , ®𝑉 = ®𝑑 − ®𝐷 . The localizing
FLS moves along vector ®𝑉 to its new position, Step 3 in Figure 3.a.

The second technique, named Physical Movement (PM), requires
the localizing FLS to position itself next to the anchor FLS using
its IMU. Next, the localizing FLS computes its angle and distance
from the anchor FLS in the ground truth, vector ®𝐷 of Step 2 in
Figure 3.b. It also computes its displacement vector relative to the
anchor, Vector ®𝑑 . We subtract the two vectors to obtain ®𝑉 , ®𝑉 = ®𝑑− ®𝐷 .
The localizing FLS moves along vector ®𝑉 to its new position, see
Step 3 in Figure 3.b.

Generally, the dead reckoning distance travelled by a localizing
FLS is greater with PM when compared with SS, see Figure 5. The
Hausdorff distance decreases close to zero with SS because the dead
reckoning distance is decreasing as a function of the number of
iterations. PM does not realize the same. Thus, SS provides more
accurate renderings. This is especially true with lines, compare
Figure 4.a with Figure 4.b.

In summary, SS is both faster and more accurate than PM. It is
also more energy efficient by minimizing the distance traveled by
FLSs. This maximizes the flight time of an FLS on a fully charged
battery. These observations hold true with both 2D and 3D shapes.
FLS Failure and Battery Charging:An FLS is a mechanical device
that may fail. One may use the concept of leases [32, 33] to prevent

Figure 4: A comparison of SS with PM, 𝜖=5°.

Figure 5: Dead reckoning distance for the 2D Butterfly of
Figure 4.

failure of a localizing FLS from causing another FLS to remain
anchored indefinitely. When a localizing FLS requests another FLS
to serve as its anchor, the anchored FLS grants a lease with a fixed
duration 𝛿 to the localizing FLS. The localizing FLS must renew
this lease prior to its expiration, i.e., 𝛿 time units. Otherwise, the
anchored FLS will assume the localizing FLS has failed and will
un-anchor itself, i.e., change its status to available.

When an anchor FLS fails, as long as the localizing FLS has suffi-
cient information to localize then it localizes, informs the members
of its swarm to update their Swarm-ID to that of the anchor FLS,
and changes its status to available. SwarMer uses leases to detect
failures in an asymmetric manner: Failure of the anchor does not
impact the localizing FLS and leases do not detect a failed anchor
FLS. SwarMer uses leases to detect failure of the localizing FLS,
causing the anchor FLS to unanchor itself.

A standby FLS [31] will substitute for a failed FLS as follows. It
uses dead reckoning to move to the location of the failed FLS and
localizes itself relative to a neighbor.

When the battery flight time of an FLS is below a threshold, it
notifies its neighbors and the standby that it is leaving the swarm.
While it flies back to a charging station, a standby FLS assumes its
lighting responsibility per the discussion of failure handling.

4 AN EVALUATION
We simulate SwarMer using MATLAB and evaluate it using several
2D and 3D point clouds, see Figures 1.a and 7.a. The simulator
assigns a point of a point cloud to an FLS and implements dead
reckoning to compute the location of the FLS deployed from a
dispatcher in its estimated truth. This dead reckoning technique is

14

(a) 2D. (b) 3D.

Figure 6: Angle of error 𝜖 with dead reckoning.

described in Section 4.1. SwarMer uses this technique repeatedly
to localize FLSs.

The simulator executes in rounds. At the start of each round,
an FLS executes the algorithm of Section 3. We quantify (a) the
minimum, average, and maximum number of FLSs that SwarMer
localizes in each round, (b) the minimum, average, and maximum
distance traveled by FLSs during each round, (c) the number of
swarms at the end of each round, (d) the Hausdorff distance at the
end of each round.

This evaluation uses standard PNG images for 2D point clouds
and the Princeton Shape Benchmark [72] for 3D point clouds. We
wrote software to convert both into point clouds, see Figure 1.a.

4.1 Dead reckoning
An FLS has a starting position 𝑆 and a destination 𝐷 in the ground
truth, see Figure 6. Vector ®𝑆𝐷 at angle 𝜃 has a fixed length 𝐿. The
error in dead reckoning is bounded by the angle 𝜖 , 𝜃 ±𝜖 . In 2D (3D),
see Figure 6.a (6.b), a radius 𝑅𝑚𝑎𝑥 for the circular-arc (spherical
dome) defined by 𝜖 . 𝑅𝑚𝑎𝑥 increases as a function of 𝜖 and 𝐿.

In 3D, in addition to 𝜖 , another random number 𝜗 between 0 and
2𝜋 radian (i.e., 0 and 360 degrees) is used to decide the direction in
which the epsilon should be added to the vector. Figure 6.b shows
𝜗 in the spherical dome.

The value of 𝜖 is a configuration parameter of the simulator and
defines 𝑅𝑚𝑎𝑥 in Figure 6. Every time an FLS invokes dead reckoning,
the simulator generates a random value between ±𝜖 . It adds this
angle to 𝜃 to compute a vector with length 𝐿 starting at S. The
point 𝐷 at the end of this vector is the destination of an FLS and its
coordinate in the estimated truth. The FLS flies to this coordinate.

4.2 Experimental Results
Figure 1 shows SwarMer localizes FLSs to approximate the ground
truth with 𝜖=5°, compare Figure 1.c with Figure 1.a. These 2D point
clouds consist of approximately 100 FLSs. SwarMer employs dead
reckoning with the Signal Strength (SS) technique and 𝜂=5. It re-
duces error by minimizing the distance traveled by localizing FLSs.

Figure 7 shows several 3D point clouds from the Princeton Bench-
mark that challenged our earlier attempts at developing a localizing
algorithm. The dragon, hat, and skateboard4 consist of 760, 1562,
4Their Princeton shape files are m1625, m1630, and m1619 respectively.

Figure 7: (a) Ground truth, dead reckoning, and SwarMer for a
dragon, a hat, and a skateboard. 𝜖=5°, a random 𝜗 , 0 ≤ 𝜗 < 360.

Figure 8: HD of the dragon with different 𝜖.

and 1727 points (FLSs), respectively. Figure 7.b shows dead reck-
oning by itself results in distorted renderings. These are enhanced
by SwarMer, resulting in a low HD, see Figure 7.c. In these experi-
ments, SwarMer merges as many as 6 swarms in a round. SwarMer
is a continuous framework. In our simulation studies, we artificially
terminated the simulation once there was a single swarm with an
HD lower than 0.09. This is realized in rounds 21, 16, and 17 with
the dragon, the skateboard, and the hat, respectively.

Figure 8 shows SwarMer’s HD with different degrees of error as
a function of the number of rounds. A lower HD is better because
it shows the FLS rendering approximates the ground truth more
accurately. This distance decreases as a function of the number
of rounds. With 𝜖=1°, the simulation terminates in the 5th round
because its HD drops below 0.09.

15

Figure 9: Shapes with tens of thousands of FLSs, 𝜖=5°, M=∞.

Figure 10: Random placement, https://youtu.be/cZrz0e61txU.

4.2.1 Scalability. SwarMer is decentralized and scales to render
shapes consisting of many FLSs accurately and quickly. We evalu-
ated SwarMer using several large point clouds produced using the
Princeton shape benchmark [72]. We report on two. First, m1510, a
race car, consisting of 11,834 unique points. Second, m303, a statue
of a face, consisting of 22,310 unique points. With both, the number
of rounds required to construct a single swarm is 6. As a compari-
son, it is 5 with the dragon consisting of 760 points. However, the
HD of the race car and the statue is approximately twice worse
than the dragon in the sixth round. See Figure 9. The number of
rounds to realize a HD<0.09 with 𝜖=5° is 24 and 37 for the race car
and the statue, respectively. It is 21 rounds for the dragon. However,
the race car has more than 10x points and the statue has more than
20x points when compared with the dragon.

4.2.2 Random FLS placement. SwarMer works with random place-
ment of FLSs in a 3D display as long as the coordinates of a point are
assigned to each FLS. A limitation is that the shape may be shifted
along the different axes by a wide margin because SwarMer is a
relative localization technique. See Figure 10.b. The precise amount
of shift depends on how FLSs form swarms, and how swarms merge
and move. One may address this limitation by having either a refer-
ence point on the display with a well known position or an oracle
FLS configured with specialized hardware that computes its posi-
tion with a high accuracy. A swarm that localizes relative to either
inherits the oracle property. All other swarms are required to lo-
calize relative to its FLSs, preventing a shape from shifting across
different axes.

(a) Triangulation. (b) Trilateration.

Figure 11: Triangulation and Trilateration.

5 A COMPARISON
In our first approach to localize FLSs to render shapes, we consid-
ered the use of triangulation and trilateration. We hypothesized
that using those FLSs with a high confidence in their location as
anchors will produce shapes with a high accuracy. This hypothesis
proved wrong because trilateration and triangulation compound
small errors in anchor locations to produce distorted shapes. Below,
we describe how an FLS computes its confidence. Subsequently, we
describe triangulation and trilateration in turn. This section ends
with a comparison of these techniques with SwarMer.
Confidence: Once an FLS 𝑖 (𝐹𝑖) arrives at its destination, it may
compute its confidence 𝐶𝑖 using either the average or worst esti-
mated error attributed to dead-reckoning. With average (worst), it
computes the average (maximum) radius R around the semi-circle
in 2D (semi-sphere in 3D) as the error in its position relative to
each of its 𝑛𝑖 neighbors. Its confidence is defined as:

𝐶𝑖 = 1 −
𝑛𝑖∑︁
𝑘=1

𝑚𝑖𝑛(1
𝑛𝑖
,

𝑅

𝛿𝑔𝑡 (𝐹𝑖 , 𝐹𝑘)
) (1)

where 𝛿𝑔𝑡 (𝐹𝑖 , 𝐹𝑘) is the distance between FLS 𝑖 and a neighboring
FLS 𝑘 in the ground truth. When a neighbor is missing, 𝑅 is set
to a large value, e.g., max integer. This causes Equation 1 to use
1
𝑛𝑖

for the missing neighbor. A large value of 𝐶𝑖 means the FLS’s
estimated truth reflects the ground truth more accurately. 𝐶𝑖 equal
to 1.0 is ideal.
Three Object Triangulation requires a localizing object to com-
pute its location and orientation using its angles relative to three
objects. Alternative techniques include iterative search, geometric
circle intersection, and Newton-Raphson iterative method [22]. We
use the geometric circle intersection method since it is widely used
in the literature and ranked as the best when compared with the
other two techniques [22].

The geometric circle intersection method is fast and its failures
are easy to detect. It requires a localizing FLS, the one with the
lowest confidence relative to its neighbors, to compute two circles
using the estimated location and the ground truth angle of three
FLSs. See Figure 11a. The three FLSs may be its neighboring FLSs. In
most cases, the two circles intersect at two points. These points are
the mutual FLSs and the location of the localizing FLS. The latter
has an angle relative to the other three FLSs in the ground-truth. If
these angles match those in the estimated truth then the localizing

16

https://youtu.be/cZrz0e61txU

FLS does not move. Otherwise, the localizing FLS computes a new
location for itself that matches the angles in the ground truth. The
localizing FLS flies to this new location.

This method fails when the center of the two circles is too close
(we used 1 illumination cell) or when two circles overlap.
Three Object Trilateration is the use of distances or ranges for
determining the unknown location of an object. The localizing FLS 𝑖
computes its distance to three neighboring FLSs in the ground truth:
𝐷1, 𝐷2, and 𝐷3. See Figure 11b. Each delta is the radius of a circle
with the corresponding neighbor as its center. FLS 𝑖 computes a
new estimated location that matches𝐷1,𝐷2, and𝐷3 in its estimated
truth. This is the new location of FLS 𝑖 .

Trilateration fails when either the three circles do not intersect
at the same point in the ground truth, or there is no location in
estimated truth that matches 𝐷1, 𝐷2, and 𝐷3. While rare, both do
occur in our experiments.

Our implementation of both triangulation and trilateration as-
sumes Signal Strength (SS) measurements in the estimated truth
match those of the ground truth with 100% accuracy. It also assumes
an FLS is able to measure angle with triangulation and distances
with trilateration with 100% accuracy. We made these assumptions
because triangulation and trilateration perform poorly. We wanted
to remove error in measuring angle and distance as a possible ex-
planation for their inferior localization.
Experimental Results Figure 1.b shows rendering of several 2D
shapes using dead reckoning with 𝜖=5°. Figure 1.c shows applica-
tion of SwarMer to each shape. It continues to use the same 𝜖 when
applying dead reckoning using signal strength. The last two rows
of Figure 1 show triangulation and trilateration do not improve
the quality of illumination. With both, an FLS uses the worst esti-
mated error attributed to dead-reckoning to compute its confidence.
This is despite the fact that both triangulation and trilateration are
provided with 100% accurate angle and distance measurements.

The number of points in a point cloud impacts the quality of
renderings with small values of 𝜖 . Figure 12 shows a 2D butterfly
consisting of 1008 points, more than ten times the number of points
in the butterfuly of Figure 1. The FLSs deployed from the origin,
(0,0), travel the longest distance to the rightmost wing of the butter-
fly, incurring the highest amount of error and the most distortion
with 𝜖=5°. With 𝜖=1°, the shape of the butterfly is recognizable
with both triangulation and trilateration. However, their Hausdorff
distance is worse than dead reckoning by itself. With 𝜖=3 and 5
degrees, triangulation results in a few FLSs to move away from the
illumination by a large distance. This is reflected in their longer
scale of the x-axis in Figures 12c. While trilateration does not suffer
from this limitation, its localization results in distorted shapes with
a large Hausdorff distance. SwarMer continues to provide accurate
localization subjectively, see Figures 12b. It realizes a Hausdorff
distance lower than 0.09 by executing 20, 30, and 40 rounds with
𝜖=1, 3, and 5 degrees, respectively.

6 AN IMPLEMENTATION
We implemented SwarMer as a Pythond 3.9 process (𝑃𝐹𝐿𝑆) to ex-
ecute on board an FLS. Processes deployed on different FLSs ex-
change messages to implement SwarMer. We used a cluster of Ama-
zon AWS instance u-6tb1.112xlarge to conduct the experiments

Figure 12: (a) A 2D butterfly with dead reckoning and three
different degrees of error, (b) with SwarMer, (c) with Trian-
gulation, and (d) Trilateration..

reported in this section. Each AWS instance consists of 448 virtual
cores and 6 Terabytes of memory. While the Dragon required a
cluster of 6 servers, the Hat and the Skateboard each used a cluster
of 16 such servers because they consist of more points (FLSs).

This implementation is different from the Matlab simulation
model in several ways. First, each 𝑃𝐹𝐿𝑆 implements the concept of
time by either sleeping or busy-waiting for the duration of time it
travels from its current location to a new destination. It has a real-
istic velocity model that controls its acceleration and deceleration
to arrive at its destination with a speed of zero. Second, each 𝑃𝐹𝐿𝑆
implements a UDP-Wrapper that emulates a networking card with
an adjustable radio range. The time required for a 𝑃𝐹𝐿𝑆 to expand
its radio range and transmit messages is another difference from
the Matlab simulator. Third, a 𝑃𝐹𝐿𝑆 may incur different forms of
failures such as packet loss, and a process shutdown to emulate
FLS failures. Finally, a 𝑃𝐹𝐿𝑆 uses a probabilistic method to thaw
the final swarm. With this method, a 𝑃𝐹𝐿𝑆 sets a timer to expire
between 𝐻 and 2𝐻 seconds where 𝐻 = 𝑙𝑜𝑔2𝐹 and F is the number
of FLSs. Once an FLS’s timer expires, it broadcasts a thaw message
using its maximum radio range. A receiving FLS sets its Swarm-ID
to its FID and resets its timer.

17

https://aws.amazon.com/ec2/instance-types/high-memory/

A 𝑃𝐹𝐿𝑆 implements a finite state machine that maintains the
following 5 states: Deploying, Available, Busy Anchor, Busy Local-
izing, and Waiting. 11 events corresponding to 11 different message
types transition the state of a 𝑃𝐹𝐿𝑆 to implement SwarMer.

A 𝑃𝐹𝐿𝑆 consists of two threads: A networking thread (𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘)
and a state mutation thread (𝑇𝑀𝑢𝑡𝑎𝑡𝑒). While 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 only reads
the FLS state, 𝑇𝑀𝑢𝑡𝑎𝑡𝑒 may both read and write the FLS state.
𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 blocks on the network socket and processes messages
as fast as they arrive by reading the current state of the machine.
One of its objectives is to release the lease granted to an FLS that
has decided to become an anchor FLS itself. This happens due to
an undesirable race condition5. In addition, it is designed to mini-
mize latency between cooperating FLSs, expediting the execution
of SwarMer to form shapes faster. 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 places those messages
that change system state in a queue for processing by 𝑇𝑀𝑢𝑡𝑎𝑡𝑒 .
𝑇𝑀𝑢𝑡𝑎𝑡𝑒 consumes these messages from the queue and may update
the state of the machine to transition its state. The queue intro-
duces delays and 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 is designed to minimize the impact of
this delay on a swarm of cooperating FLSs.

In our experiments with drones, we have observed the commu-
nication link to drop packets. A 𝑃𝐹𝐿𝑆 uses UDP (instead of TCP) to
communicate with other 𝑃𝐹𝐿𝑆 s. UDP is an unreliable communica-
tion protocol. It may drop packets, deliver a sequence of packets
transmitted by a 𝑃𝐹𝐿𝑆 out of order, and delay the delivery of packets.
Our implementation of SwarMer is non-blocking to accommodate
the first two features of UDP. With UDP’s last two features, we
use a monotonically increasing message id for each packet sent by
a 𝑃𝐹𝐿𝑆𝑖 . A 𝑃𝐹𝐿𝑆 𝑗

maintains the largest message id it has received
from another 𝑃𝐹𝐿𝑆𝑖 and may drop those with a smaller id.

The lessons learned from this implementation are as follows.
First, SwarMer is fast, reducing the HD by several orders of mag-
nitude in a few seconds. Second, SwarMer tolerates a high packet
loss rate to construct one swarm. Hence, it continues to reduce the
HD significantly in the first few seconds. Third, while FLS speed
impacts the initial deployment of FLSs using dead reckoning, it
does not impact how fast SwarMer improves the quality of an illu-
mination (i.e., drop in HD) as a function of time. The key insight is
that the average distance moved by an FLS (or swarm) to localize is
small. This prevents an FLS from accelerating to its maximum speed.
Fourth, SwarMer is resilient to FLS failures. It incorporates FLSs that
replace failed FLSs seamlessly. Finally, FLS latency in processing
messages may result in undesirable race conditions that slow-down
SwarMer without impacting its functionality. This explains our use
of 𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 thread to minimize latency.
Obtained Results. Figure 14 shows the HD as a function of time
for the different shapes in Figure 7. The y-axis of this figure is linear
scale. It reports HD as a function of the length of a display cell,
a cube with a 5 Centimeter length. Hence, a HD of 1 means the
maximum distance between the points in the ground truth and
the estimated truth is 5 Centimeter. HD drops significantly in the
first few seconds of SwarMer’s execution as FLSs localize relative

5An example race condition is an FLS 5 challenging FLSs 4 and 6. FLS 6 accepts the
challenge, causing FLS 5 to become its anchor. Concurrently, FLS 4 accepts FLS 5’s
challenge to become its anchor by granting a lease to FLS 5. Should FLS 5 enter the
waiting state for FLS 6, its𝑇𝑁𝑒𝑡𝑤𝑜𝑟𝑘 reads Waiting state, detects the undesirable race
condition, and informs FLS 4 to unanchor itself and release its lease. This minimizes
the number of expired leases, expediting SwarMer.

to one another. When this distance drops below 50 Micrometer
(corresponding to HD of 0.001), we consider it close to zero and
stop reporting the HD. The different shapes arrive at this threshold
at different times. See the variant of the Figure inside its empty
space with y-axis in log scale. The Dragon arrives at this threshold
soonest as it consists of 760 FLSs. The Skateboard requires the
longest as it consists of more than twice (1727) as many FLSs.

Figure 13 shows the 3D shapes with different HD values. There is
no noticeable difference between the ground truth and the estimated
truth with HD values lower than 0.1, a 5 millimeter error. See the
anonymized video links for a demonstration.

We designed the UDP-Wrapper to support both symmetric and
asymmetric packet loss. It may be configured to drop packets with
a pre-specified probability either at the transmitting, receiving, or
both. In our experiments, SwarMer was resilient to these errors.
Depending on the lost event, SwarMer may require a longer time
to construct one swarm. However, it continues to decrease the HD
dramatically in the first few seconds of its execution. To illustrate,
Figure 15 showsHDwith the Skateboard and different rate of packet
loss. The results with asymmetric packet loss are similar.

SwarMer’s use of leases enables it to tolerate FLS failures. More-
over, a replacement FLS deployed by a dispatcher may execute
SwarMer to incorporate itself. Figure 16 shows the HD with the
Skateboard and failure rates6 as high as 10%. The HD is competitive
with a failure rate lower than 0.01%, i.e., 1 failure every 3 hours.
With higher probabilities, the anonymized videos show the dark
points are illuminated using the replacement FLSs incorporated by
SwarMer. One must use a failure handling technique to minimize
the impact of these dark points. An example technique is to use
standby FLSs [31] to maintain a high quality of illumination. This
topic is an orthogonal topic to localization.

7 RELATEDWORK
The SwarMer framework to localize FLSs is novel and to the best
of our knowledge has not been described elsewhere.

Outdoor drone shows use GPS [70] to localize and illuminate
shapes in the sky. The largest show consisted of 5200 drones to
celebrate the 100th anniversary of the Communist Party of China
in the night sky of Longgang, Shenzhen. An FLS display is different
because it does not have line of sight with GPS satellites.

The concept of a 3D display using FLSs to render multimedia
shapes [2, 4, 30, 31, 61] is relatively new. Prior studies either identify
localization as a challenge [2, 30, 61] or assume one exists [4, 31].
SwarMer is novel and designed for use by these studies.

Centralized indoor techniques such as optical motion capture
systems merge images from fixed cameras positioned around a
display volume to localize quadrotors and drones [44, 63, 68]. These
systems, e.g., Vicon, are highly accurate. They require a unique
marker arrangement for each drone and have enabled control and
navigation of swarms of tens of drones. It may be difficult (if not im-
possible) to form unique markers for more than tens of small drones
measuring tens of millimeters diagonally [63]. Hence their scala-
bility is limited. Moreover, these systems require broadcast at high

6A failure of x% per FLS per second translates into an FLS failing in 100
𝑥

seconds, e.g.,
a 10% failure per FLS per second translates into an FLS failing in 10 seconds.

18

(a) Dragon, https://youtu.be/PRyjdmw8NVc (b) Hat, https://youtu.be/y_xHdz5bs5M (c) Skateboard, https://youtu.be/a0fFu0z6BU0

Figure 13: No FLS movement is visible with HD<0.1. Click the URLs for a video.

Figure 14: HD with 3D shapes of Figure 7, 𝜖=5°.

Figure 15: HD with 10% packet loss, Skateboard, 𝜖=5°.

frequency from a central computer to each drone [90]. This cen-
tralized communication channel is a single point of system failure.
It has a latency of several (7) milliseconds [63] and its bandwidth
constrains the robustness and swarm size. SwarMer is different
because it is decentralized, requiring each FLS to localize relative
to its neighbor to form a swarm. The broadcast range of an FLS
is controlled by its signal strength to communicate with a fixed
number (𝜂) of neighboring FLSs.

There exists a large number of studies in the area of forma-
tion control [16, 80, 85, 106], use of sensors to localize robots and
drones [1, 7, 24, 25, 29, 34, 41–43, 46, 48, 54, 56, 64, 87, 94, 95, 97,
98, 100, 104, 107], and collision avoidance [5, 6, 8, 12, 15, 19, 20,
26, 27, 36, 37, 39, 44, 52, 53, 55, 62, 63, 76, 78, 81–84, 99]. These

Figure 16: HD with 0.01%, 0.1%, 1%, and 10% failures per
FLS per second for the Skateboard. Video clips avail-
able at https://youtu.be/YE-hzpfONwg, https://youtu.be/1Tx-
_DDZf0w, https://youtu.be/QEKJgNn0Yy8, https://youtu.be/
mU-oIVaNu8M, respectively.

studies complement SwarMer and may be used by a system that
implements a 3D display [2]. These prior studies lack the concept of
FLSs forming a group (swarm), requiring a swarm to move together,
swarms merging to become one, FLSs thawing their membership to
repeat the process continuously, or use leases to explicitly support
FLSs failing and leaving to charge their batteries. These concepts,
their decentralized design and implementation are novel and a
contribution of SwarMer.

8 CONCLUSIONS AND FUTURE RESEARCH
Inspired by swarms in nature, SwarMer is a decentralized tech-
nique for relative localization of FLSs to render complex 2D and 3D
shapes. It requires FLSs to localize relative to one another to form a
swarm. Movement of an FLS along a vector causes its entire swarm
to move along the vector. SwarMer uses the unique identifier of
an FLS assigned at its deployment time to implement an organiza-
tional framework. This framework compensates for the simplicity
of individual FLSs to render complex 2D and 3D shapes accurately.

We presented a MATLAB simulation and a Python implemen-
tation of SwarMer. The implementation shows SwarMer is fast.
Within a few seconds, it reduces the HD to a value below 1 display
cell. Its continued execution reduces the HD further to match the

19

https://youtu.be/PRyjdmw8NVc
https://youtu.be/y_xHdz5bs5M
https://youtu.be/a0fFu0z6BU0
https://youtu.be/YE-hzpfONwg
https://youtu.be/1Tx-_DDZf0w
https://youtu.be/1Tx-_DDZf0w
https://youtu.be/QEKJgNn0Yy8
https://youtu.be/mU-oIVaNu8M
https://youtu.be/mU-oIVaNu8M

ground truth more accurately. It tolerates network packet loss, FLSs
failing and leaving to charge their battery, and replacement FLSs
arriving to illuminate points.

We are initiating an implementation of SwarMer by evaluating
the relevant plugins to the SwarMer. These include an investigation
of the formation control techniques, alternative sensors for a local-
izing FLS to orient itself relative to an anchor FLS, and a collision
avoidance technique as an FLS moves along a vector, see Section 7.

9 ACKNOWLEDGMENTS
We thank Jiadong Bai and Shuqin Zhu for their valuable comments
on the earlier drafts of this paper. This research was supported
in part by the NSF grant IIS-2232382. We gratefully acknowledge
CloudBank [57] and CloudLab [91] for the use of their resources to
enable all experimental results presented in this paper.

REFERENCES
[1] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Al-

nafessah, Suheer Al-Hadhrami, Mai A. Al-Ammar, and Hend S. Al-Khalifa.
2016. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent
Advances. Sensors 16, 5 (2016). https://doi.org/10.3390/s16050707

[2] Hamed Alimohammadzadeh, Rohit Bernard, Yang Chen, Trung Phan, Prashant
Singh, Shuqin Zhu, Heather Culbertson, and Shahram Ghandeharizadeh. 2023.
Dronevision: An Experimental 3D Testbed for Flying Light Specks. https:
//doi.org/10.48550/arXiv.2308.10121 arXiv:2308.10121 [cs.MM]

[3] Hamed Alimohammadzadeh and Shahram Ghandeharizadeh. 2023. SwarMer:
A Decentralized Localization Framework for Flying Light Specks. https:
//doi.org/10.48550/arXiv.2312.04571 arXiv:2312.04571 [cs.RO]

[4] Hamed Alimohammadzadeh, Daryon Mehraban, and Shahram Ghande-
harizadeh. 2023. Modeling Illumination Data with Flying Light Specks. In
ACM Multimedia Systems (Vancouver, Canada) (MMSys ’23). Association for
Computing Machinery, New York, NY, USA, 363–368. https://doi.org/10.1145/
3587819.3592544

[5] Senthil Hariharan Arul and D. Manocha. 2020. DCAD: Decentralized Collision
Avoidance With Dynamics Constraints for Agile Quadrotor Swarms. IEEE
Robotics and Automation Letters 5 (2020), 1191–1198. https://doi.org/10.1109/
LRA.2020.2967281

[6] Federico Augugliaro, Angela Schoellig, and Raffaello D’Andrea. 2012. Gen-
eration of Collision-Free Trajectories for a Quadrocopter Fleet: A Sequential
Convex Programming Approach. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference
on Intelligent Robots and Systems. 1917–1922. https://doi.org/10.1109/IROS.
2012.6385823

[7] Andrej Babinec, Ladislav Jurišica, Peter Hubinský, and František Duchoň. 2014.
Visual Localization of Mobile Robot Using Artificial Markers. Procedia Engi-
neering 96 (2014), 1–9. https://doi.org/10.1016/j.proeng.2014.12.091 Modelling
of Mechanical and Mechatronic Systems.

[8] Daman Bareiss and Joran van den Berg. 2013. Reciprocal Collision Avoidance
for Robots with Linear Dynamics using LQR-Obstacles. In Proceedings - IEEE
International Conference on Robotics and Automation. 3847–3853. https://doi.
org/10.1109/ICRA.2013.6631118

[9] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and Rajeev Motwani.
2003. Estimating Aggregates on a Peer-to-Peer Network. Technical Report 2003-24.
Stanford InfoLab. http://ilpubs.stanford.edu:8090/586/

[10] Patric Beinschob,MarkMeyer, Christoph Reinke, Valerio Digani, Cristian Secchi,
and Lorenzo Sabattini. 2017. Semi-automated map creation for fast deployment
of AGV fleets in modern logistics. Robotics and Autonomous Systems 87 (2017),
281–295. https://doi.org/10.1016/j.robot.2016.10.018

[11] Fabio Bernardini, Alice Buffi, Daniele Fontanelli, David Macii, Valerio Magnago,
MirkoMarracci, Andrea Motroni, Paolo Nepa, and Bernardo Tellini. 2021. Robot-
Based Indoor Positioning of UHF-RFID Tags: The SAR Method With Multiple
Trajectories. IEEE Transactions on Instrumentation and Measurement 70 (2021),
1–15. https://doi.org/10.1109/TIM.2020.3033728

[12] Tomáš Báča, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar.
2018. Model Predictive Trajectory Tracking and Collision Avoidance for Reliable
Outdoor Deployment of Unmanned Aerial Vehicles. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 6753–6760. https://doi.org/
10.1109/IROS.2018.8594266

[13] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M. Montiel,
and Juan D. Tardós. 2021. ORB-SLAM3: An Accurate Open-Source Library for
Visual, Visual–Inertial, and Multimap SLAM. IEEE Transactions on Robotics 37,
6 (2021), 1874–1890. https://doi.org/10.1109/TRO.2021.3075644

[14] Justin Cano, Gaël Pages, Eric Chaumette, and Jerome Le Ny. 2022. Optimal
Localizability Criterion for Positioning with Distance-Deteriorated Relative
Measurements. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 947–953. https://doi.org/10.1109/IROS47612.2022.9981718

[15] D. Cappello, S. Garcin, Z. Mao, M. Sassano, A. Paranjape, and T. Mylvaganam.
2020. AHybrid Controller for Multi-Agent Collision Avoidance via a Differential
Game Formulation. IEEE Transactions on Control Systems Technology PP (07
2020), 1–8. https://doi.org/10.1109/TCST.2020.3005602

[16] Nelson P. K. Chan, Bayu Jayawardhana, and Hector Garcia de Marina. 2021.
Angle-Constrained Formation Control for Circular Mobile Robots. IEEE Control
Systems Letters 5, 1 (2021), 109–114. https://doi.org/10.1109/LCSYS.2020.3000061

[17] Haige Chen and Ashutosh Dhekne. 2022. PnPLoc: UWB Based Plug and Play
Indoor Localization. In 2022 IEEE 12th International Conference on Indoor Posi-
tioning and Indoor Navigation (IPIN). 1–8. https://doi.org/10.1109/IPIN54987.
2022.9918119

[18] Siyuan Chen, Dong Yin, and Yifeng Niu. 2022. A Survey of Robot Swarms and
Relative Localization Method. Sensors 22, 12 (2022). https://doi.org/10.3390/
s22124424

[19] Yu Fan Chen, Mark Cutler, and Jonathan How. 2015. Decoupled Multiagent Path
Planning via Incremental Sequential Convex Programming. Proceedings - IEEE
International Conference on Robotics and Automation 2015 (06 2015), 5954–5961.
https://doi.org/10.1109/ICRA.2015.7140034

[20] Hui Cheng, Q. Zhu, Z. Liu, Tianye Xu, and Liang Lin. 2017. Decentralized
Navigation of Multiple Agents Based on ORCA and Model Predictive Control.
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(2017), 3446–3451. https://doi.org/10.1109/IROS.2017.8206184

[21] Younghun Cho, Giseop Kim, Sangmin Lee, and Jee-Hwan Ryu. 2022.
OpenStreetMap-Based LiDAR Global Localization in Urban Environment With-
out a Prior LiDAR Map. IEEE Robotics and Automation Letters 7, 2 (2022),
4999–5006. https://doi.org/10.1109/LRA.2022.3152476

[22] Charles J. Cohen and Frank V. Koss. 1993. Comprehensive Study of Three-
Object Triangulation. In Mobile Robots VII, William J. Wolfe and Wendell H.
Chun (Eds.), Vol. 1831. International Society for Optics and Photonics, SPIE, 95
– 106. https://doi.org/10.1117/12.143782

[23] Pablo Corbalán, Gian Pietro Picco, and Sameera Palipana. 2019. Chorus:
UWB Concurrent Transmissions for GPS-like Passive Localization of Count-
less Targets. In Proceedings of the 18th International Conference on Informa-
tion Processing in Sensor Networks (Montreal, Quebec, Canada) (IPSN ’19). As-
sociation for Computing Machinery, New York, NY, USA, 133–144. https:
//doi.org/10.1145/3302506.3310395

[24] Renaud Dube, Abel Gawel, Hannes Sommer, Juan Nieto, Roland Siegwart, and
Cesar Cadena. 2017. An online multi-robot SLAM system for 3D LiDARs.
1004–1011. https://doi.org/10.1109/IROS.2017.8202268

[25] Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2018. Direct Sparse Odometry.
IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 3 (2018), 611–
625. https://doi.org/10.1109/TPAMI.2017.2658577

[26] T. Engelhardt, T. Konrad, Bjorn E. Schafer, and D. Abel. 2016. Flatness-Based
Control for a Quadrotor Camera Helicopter using Model Predictive Control Tra-
jectory Generation. 24th Mediterranean Conference on Control and Automation
(MED) (2016), 852–859.

[27] Eduardo Ferrera, Alfonso Alcántara, J. Capitán, Á. R. Castaño, P. Marrón, and
A. Ollero. 2018. Decentralized 3D Collision Avoidance for Multiple UAVs in
Outdoor Environments. Sensors (Basel, Switzerland) 18 (2018).

[28] Akshay Gadre, Revathy Narayanan, and Swarun Kumar. 2018. Maintaining UAV
Stability Using Low-PowerWANs. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking (New Delhi, India) (MobiCom
’18). Association for ComputingMachinery, New York, NY, USA, 738–740. https:
//doi.org/10.1145/3241539.3267747

[29] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
2020. OpenVINS: A Research Platform for Visual-Inertial Estimation. In Proc.
of the IEEE International Conference on Robotics and Automation. Paris, France.
https://github.com/rpng/open_vins

[30] Shahram Ghandeharizadeh. 2021. Holodeck: Immersive 3D Displays Using
Swarms of Flying Light Specks. In ACMMultimedia Asia (Gold Coast, Australia).
https://doi.org/10.1145/3469877.3493698

[31] Shahram Ghandeharizadeh. 2022. Display of 3D Illuminations using Flying
Light Specks. In ACM Multimedia (Lisboa, Portugal) (MM ’22). Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3503161.
3548250

[32] Shahram Ghandeharizadeh, Jason Yap, and Hieu Nguyen. 2014. Strong Con-
sistency in Cache Augmented SQL Systems. In Proceedings of the 15th In-
ternational Middleware Conference (Bordeaux, France) (Middleware ’14). As-
sociation for Computing Machinery, New York, NY, USA, 181–192. https:
//doi.org/10.1145/2663165.2663318

[33] C. Gray and D. Cheriton. 1989. Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency. SIGOPS Oper. Syst. Rev. 23, 5 (nov 1989),
202–210. https://doi.org/10.1145/74851.74870

20

https://doi.org/10.3390/s16050707
https://doi.org/10.48550/arXiv.2308.10121
https://doi.org/10.48550/arXiv.2308.10121
https://arxiv.org/abs/2308.10121
https://doi.org/10.48550/arXiv.2312.04571
https://doi.org/10.48550/arXiv.2312.04571
https://arxiv.org/abs/2312.04571
https://doi.org/10.1145/3587819.3592544
https://doi.org/10.1145/3587819.3592544
https://doi.org/10.1109/LRA.2020.2967281
https://doi.org/10.1109/LRA.2020.2967281
https://doi.org/10.1109/IROS.2012.6385823
https://doi.org/10.1109/IROS.2012.6385823
https://doi.org/10.1016/j.proeng.2014.12.091
https://doi.org/10.1109/ICRA.2013.6631118
https://doi.org/10.1109/ICRA.2013.6631118
http://ilpubs.stanford.edu:8090/586/
https://doi.org/10.1016/j.robot.2016.10.018
https://doi.org/10.1109/TIM.2020.3033728
https://doi.org/10.1109/IROS.2018.8594266
https://doi.org/10.1109/IROS.2018.8594266
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/IROS47612.2022.9981718
https://doi.org/10.1109/TCST.2020.3005602
https://doi.org/10.1109/LCSYS.2020.3000061
https://doi.org/10.1109/IPIN54987.2022.9918119
https://doi.org/10.1109/IPIN54987.2022.9918119
https://doi.org/10.3390/s22124424
https://doi.org/10.3390/s22124424
https://doi.org/10.1109/ICRA.2015.7140034
https://doi.org/10.1109/IROS.2017.8206184
https://doi.org/10.1109/LRA.2022.3152476
https://doi.org/10.1117/12.143782
https://doi.org/10.1145/3302506.3310395
https://doi.org/10.1145/3302506.3310395
https://doi.org/10.1109/IROS.2017.8202268
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1145/3241539.3267747
https://doi.org/10.1145/3241539.3267747
https://github.com/rpng/open_vins
https://doi.org/10.1145/3469877.3493698
https://doi.org/10.1145/3503161.3548250
https://doi.org/10.1145/3503161.3548250
https://doi.org/10.1145/2663165.2663318
https://doi.org/10.1145/2663165.2663318
https://doi.org/10.1145/74851.74870

[34] Bernhard Großiwindhager, Michael Stocker, Michael Rath, Carlo Alberto Boano,
and Kay Römer. 2019. SnapLoc: An Ultra-Fast UWB-Based Indoor Localization
System for an Unlimited Number of Tags. In ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN). 61–72.

[35] Yanying Gu, Anthony C. C. Lo, and Ignas G. Niemegeers. 2009. A Survey of
Indoor Positioning Systems for Wireless Personal Networks. IEEE Commun.
Surv. Tutorials 11, 1 (2009), 13–32. https://doi.org/10.1109/SURV.2009.090103

[36] Stephen. J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin,
Dinesh Manocha, and Pradeep Dubey. 2009. ClearPath: Highly Parallel Col-
lision Avoidance for Multi-Agent Simulation. In Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (New Orleans,
Louisiana) (SCA ’09). Association for Computing Machinery, New York, NY,
USA, 177–187. https://doi.org/10.1145/1599470.1599494

[37] Michael Hamer, Lino Widmer, and Raffaello Drandrea. 2018. Fast Generation
of Collision-Free Trajectories for Robot Swarms Using GPU Acceleration. IEEE
Access PP (12 2018), 1–1. https://doi.org/10.1109/ACCESS.2018.2889533

[38] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. 1993. Comparing
Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence 15, 9 (1993), 850–863. https://doi.org/10.1109/34.232073

[39] Hao Jiang, Tianlu Mao, Shuangyuan Wu, Mingliang Xu, and Zhaoqi Wang.
2014. A Local Evaluation Approach for Multi-Agent Navigation in Dynamic
Scenarios. In Proceedings of the 13th ACM SIGGRAPH International Conference
on Virtual-Reality Continuum and Its Applications in Industry (Shenzhen, China)
(VRCAI ’14). Association for Computing Machinery, New York, NY, USA, 89–93.
https://doi.org/10.1145/2670473.2670493

[40] Roland Jung and Stephan Weiss. 2022. Scalable and Modular Ultra-Wideband
Aided Inertial Navigation. In 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2423–2430. https://doi.org/10.1109/IROS47612.
2022.9981937

[41] Peng-Yuan Kao, Hsiu-Jui Chang, Kuan-Wei Tseng, Timothy Chen, He-Lin Luo,
and Yi-Ping Hung. 2023. VIUNet: Deep Visual–Inertial–UWB Fusion for Indoor
UAV Localization. IEEE Access 11 (2023), 61525–61534. https://doi.org/10.1109/
ACCESS.2023.3279292

[42] Georg Klein and David Murray. 2007. Parallel Tracking and Mapping for
Small AR Workspaces. In IEEE and ACM International Symposium on Mixed and
Augmented Reality. 225–234. https://doi.org/10.1109/ISMAR.2007.4538852

[43] Sebastian Klose, Jian Wang, Michael Achtelik, Giorgio Panin, Florian Holzapfel,
and Alois Knoll. 2010. Markerless, vision-assisted flight control of a quadro-
copter. In IEEE/RSJ International Conference on Intelligent Robots and Systems.
5712–5717. https://doi.org/10.1109/IROS.2010.5649019

[44] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. 2013. To-
wards a Swarm of Agile Micro Quadrotors. Autonomous Robots 35 (11 2013),
573–7527. https://doi.org/10.1007/s10514-013-9349-9

[45] Fabrizio Lazzari, Alice Buffi, Paolo Nepa, and Sandro Lazzari. 2017. Numerical
Investigation of an UWB Localization Technique for Unmanned Aerial Vehicles
in Outdoor Scenarios. IEEE Sensors Journal 17, 9 (2017), 2896–2903. https:
//doi.org/10.1109/JSEN.2017.2684817

[46] Anton Ledergerber, Michael Hamer, and Raffaello D’Andrea. 2015. A Robot
Self-Localization System using One-Way Ultra-Wideband Communication. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
3131–3137. https://doi.org/10.1109/IROS.2015.7353810

[47] Leong Lee, Matthew Jones, Gregory S. Ridenour, Sam J. Bennett, Arisha C.
Majors, Bianca L. Melito, and Michael J. Wilson. 2016. Comparison of Ac-
curacy and Precision of GPS-Enabled Mobile Devices. In 2016 IEEE Interna-
tional Conference on Computer and Information Technology (CIT). IEEE, 73–82.
https://doi.org/10.1109/CIT.2016.94

[48] Jiarong Lin and Fu Zhang. 2020. Loam livox: A fast, robust, high-precision
LiDAR odometry and mapping package for LiDARs of small FoV. In 2020 IEEE
International Conference on Robotics and Automation (ICRA). 3126–3131. https:
//doi.org/10.1109/ICRA40945.2020.9197440

[49] Zhong Liu, Yuqing He, Liying Yang, and Jianda Han. 2017. Control Techniques
of Tilt Rotor Unmanned Aerial Vehicle Systems: A Review. Chinese Journal of
Aeronautics 30, 1 (2017), 135–148. https://doi.org/10.1016/j.cja.2016.11.001

[50] Nicola Macoir, Jan Bauwens, Bart Jooris, Ben Van Herbruggen, Jen Rossey,
Jeroen Hoebeke, and Eli De Poorter. 2019. UWB Localization with Battery-
Powered Wireless Backbone for Drone-Based Inventory Management. Sensors
19, 3 (2019). https://doi.org/10.3390/s19030467

[51] LucaMainetti, Luigi Patrono, and Ilaria Sergi. 2014. A Survey on Indoor Position-
ing Systems. In 22nd International Conference on Software, Telecommunications
and Computer Networks (SoftCOM). IEEE, 111–120. https://doi.org/10.1109/
SOFTCOM.2014.7039067

[52] Daniel Morgan, Soon-Jo Chung, and Fred Hadaegh. 2013. Decentralized Model
Predictive Control of Swarms of Spacecraft Using Sequential Convex Program-
ming. In Advances in the Astronautical Sciences.

[53] Daniel Morgan, Soon-Jo Chung, and Fred Y. Hadaegh. 2014. Model Pre-
dictive Control of Swarms of Spacecraft Using Sequential Convex Program-
ming. Journal of Guidance, Control, and Dynamics 37, 6 (2014), 1725–1740.
https://doi.org/10.2514/1.G000218

[54] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on
Robotics 33, 5 (2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[55] Thulasi Mylvaganam, Mario Sassano, and Alessandro Astolfi. 2017. A Differen-
tial Game Approach to Multi-Agent Collision Avoidance. IEEE Trans. Automat.
Control PP (04 2017), 4229–4235. https://doi.org/10.1109/TAC.2017.2680602

[56] Thien-Minh Nguyen, Muqing Cao, Shenghai Yuan, Yang Lyu, Thien Hoang
Nguyen, and Lihua Xie. 2021. LIRO: Tightly Coupled Lidar-Inertia-Ranging
Odometry. In IEEE International Conference on Robotics and Automation (ICRA).
14484–14490. https://doi.org/10.1109/ICRA48506.2021.9560954

[57] Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande,
Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, Kather-
ine Yelick, Eric Van Dusen, and James Mitchell. 2021. CloudBank: Managed
Services to Simplify Cloud Access for Computer Science Research and Educa-
tion. In Practice and Experience in Advanced Research Computing (Boston, MA,
USA) (PEARC ’21). Association for Computing Machinery, New York, NY, USA,
Article 45, 4 pages. https://doi.org/10.1145/3437359.3465586

[58] Serban Georgica Obreja and Alexandru Vulpe. 2020. Evaluation of an Indoor
Localization Solution Based on Bluetooth Low Energy Beacons. In 2020 13th
International Conference on Communications (COMM). 227–231. https://doi.org/
10.1109/COMM48946.2020.9141987

[59] Sohel J. Patel and Maciej J. Zawodniok. 2022. 3D Localization of RFID Antenna
Tags Using Convolutional Neural Networks. IEEE Transactions on Instrumenta-
tion andMeasurement 71 (2022), 1–11. https://doi.org/10.1109/TIM.2022.3146604

[60] Maxim Pavliv, Fabrizio Schiano, Christopher Reardon, Dario Floreano, and
Giuseppe Loianno. 2021. Tracking and Relative Localization of Drone Swarms
With a Vision-Based Headset. IEEE Robotics and Automation Letters 6, 2 (2021),
1455–1462. https://doi.org/10.1109/LRA.2021.3051565

[61] Trung Phan, Hamed Alimohammadzadeh, Heather Culbertson, and Shahram
Ghandeharizadeh. 2023. An Evaluation of Three Distance Measurement Sensors
for Flying Light Specks. In International Conference on Intelligent Metaverse
Technologies and Applications (iMETA).

[62] James Preiss, Wolfgang Hoenig, Nora Ayanian, and Gaurav Sukhatme. 2017.
Downwash-Aware Trajectory Planning for Large Quadcopter Teams. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (04 2017), 8.

[63] James Preiss, Wolfgang Honig, Gaurav Sukhatme, and Nora Ayanian. 2017.
Crazyswarm: A Large Nano-Quadcopter Swarm. In IEEE International Confer-
ence on Robotics and Automation (ICRA). 3299–3304. https://doi.org/10.1109/
ICRA.2017.7989376

[64] Tong Qin, Peiliang Li, and Shaojie Shen. 2018. VINS-Mono: A Robust and Ver-
satile Monocular Visual-Inertial State Estimator. IEEE Transactions on Robotics
34, 4 (2018), 1004–1020. https://doi.org/10.1109/TRO.2018.2853729

[65] Guenther Retscher. 2020. Fundamental Concepts and Evolution of Wi-Fi User
Localization: An Overview Based on Different Case Studies. Sensors 20, 18
(2020). https://doi.org/10.3390/s20185121

[66] Craig W. Reynolds. 1987. Flocks, Herds and Schools: A Distributed Behavioral
Model. In Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’87). Association for Computing Machinery,
New York, NY, USA, 25–34. https://doi.org/10.1145/37401.37406

[67] Craig W. Reynolds. 1987. Flocks, Herds and Schools: A Distributed Behavioral
Model. SIGGRAPH Comput. Graph. 21, 4 (aug 1987), 25–34. https://doi.org/10.
1145/37402.37406

[68] Robin Ritz, Mark W. Müller, Markus Hehn, and Raffaello D’Andrea. 2012. Co-
operative Quadrocopter Ball Throwing and Catching. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 4972–4978. https:
//doi.org/10.1109/IROS.2012.6385963

[69] Alina Rubina, Oleksandr Artemenko, Oleksandr Andryeyev, and Andreas
Mitschele-Thiel. 2017. A Novel Hybrid Path Planning Algorithm for Local-
ization in Wireless Networks. In Proceedings of the 3rd Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications (Niagara Falls, New York, USA)
(DroNet ’17). Association for Computing Machinery, New York, NY, USA, 13–16.
https://doi.org/10.1145/3086439.3086441

[70] Nel Samama. 2008. Global Positioning: Technologies and Performance. https:
//doi.org/10.1002/9780470241912

[71] Martin Saska. 2015. MAV-swarms: Unmanned aerial vehicles stabilized along a
given path using onboard relative localization. In 2015 International Conference
on Unmanned Aircraft Systems (ICUAS). 894–903. https://doi.org/10.1109/ICUAS.
2015.7152376

[72] Philip Shilane, Patrick Min, Michael M. Kazhdan, and Thomas A. Funkhouser.
2004. The Princeton Shape Benchmark. In 2004 International Conference on
Shape Modeling and Applications (SMI 2004), 7-9 June 2004, Genova, Italy. IEEE
Computer Society, 167–178. https://doi.org/10.1109/SMI.2004.1314504

[73] Artur Shurin and Itzik Klein. 2022. QuadNet: A Hybrid Framework for Quadro-
tor Dead Reckoning. Sensors 22, 4 (2022). https://doi.org/10.3390/s22041426

[74] Bruno Silva, Zhibo Pang, Johan Åkerberg, Jonas Neander, and Gerhard Hancke.
2014. Experimental study of UWB-based high precision localization for in-
dustrial applications. In 2014 IEEE International Conference on Ultra-WideBand
(ICUWB). 280–285. https://doi.org/10.1109/ICUWB.2014.6958993

21

https://doi.org/10.1109/SURV.2009.090103
https://doi.org/10.1145/1599470.1599494
https://doi.org/10.1109/ACCESS.2018.2889533
https://doi.org/10.1109/34.232073
https://doi.org/10.1145/2670473.2670493
https://doi.org/10.1109/IROS47612.2022.9981937
https://doi.org/10.1109/IROS47612.2022.9981937
https://doi.org/10.1109/ACCESS.2023.3279292
https://doi.org/10.1109/ACCESS.2023.3279292
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/IROS.2010.5649019
https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1109/JSEN.2017.2684817
https://doi.org/10.1109/JSEN.2017.2684817
https://doi.org/10.1109/IROS.2015.7353810
https://doi.org/10.1109/CIT.2016.94
https://doi.org/10.1109/ICRA40945.2020.9197440
https://doi.org/10.1109/ICRA40945.2020.9197440
https://doi.org/10.1016/j.cja.2016.11.001
https://doi.org/10.3390/s19030467
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.1109/SOFTCOM.2014.7039067
https://doi.org/10.2514/1.G000218
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TAC.2017.2680602
https://doi.org/10.1109/ICRA48506.2021.9560954
https://doi.org/10.1145/3437359.3465586
https://doi.org/10.1109/COMM48946.2020.9141987
https://doi.org/10.1109/COMM48946.2020.9141987
https://doi.org/10.1109/TIM.2022.3146604
https://doi.org/10.1109/LRA.2021.3051565
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.3390/s20185121
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1109/IROS.2012.6385963
https://doi.org/10.1109/IROS.2012.6385963
https://doi.org/10.1145/3086439.3086441
https://doi.org/10.1002/9780470241912
https://doi.org/10.1002/9780470241912
https://doi.org/10.1109/ICUAS.2015.7152376
https://doi.org/10.1109/ICUAS.2015.7152376
https://doi.org/10.1109/SMI.2004.1314504
https://doi.org/10.3390/s22041426
https://doi.org/10.1109/ICUWB.2014.6958993

[75] Haryong Song, Wonsub Choi, and Haedong Kim. 2016. Robust Vision-Based
Relative-Localization Approach Using an RGB-Depth Camera and LiDAR Sensor
Fusion. IEEE Transactions on Industrial Electronics 63, 6 (2016), 3725–3736.
https://doi.org/10.1109/TIE.2016.2521346

[76] Martin Stephan, Javier Alonso-Mora, and Roland Siegwart. 2013. Reciprocal
Collision Avoidance With Motion Continuity Constraints. IEEE Transactions on
Robotics 29 (08 2013), 899–912. https://doi.org/10.1109/TRO.2013.2258733

[77] Yuan Sun. 2021. Autonomous Integrity Monitoring for Relative Navigation
of Multiple Unmanned Aerial Vehicles. Remote Sensing 13, 8 (2021). https:
//doi.org/10.3390/rs13081483

[78] Camilla Tabasso, Venanzio Cichella, Syed Mehdi, Thiago Marinho, and Naira
Hovakimyan. 2021. Time Coordination and Collision Avoidance Using Leader-
Follower Strategies in Multi-Vehicle Missions. Robotics 10 (02 2021), 34. https:
//doi.org/10.3390/robotics10010034

[79] Xinyu Tong, Hao Li, Xiaohua Tian, and Xinbing Wang. 2021. Wi-Fi Localization
Enabling Self-Calibration. IEEE/ACM Transactions on Networking 29, 2 (2021),
904–917. https://doi.org/10.1109/TNET.2021.3051998

[80] Roberto Tron, Justin Thomas, Giuseppe Loianno, Kostas Daniilidis, and Vijay
Kumar. 2016. A Distributed Optimization Framework for Localization and
Formation Control: Applications to Vision-Based Measurements. IEEE Control
SystemsMagazine 36, 4 (2016), 22–44. https://doi.org/10.1109/MCS.2016.2558401

[81] Jur van den Berg, Stephen Guy, Ming Lin, and Dinesh Manocha. 2011. Reciprocal
n-Body Collision Avoidance. Vol. 70. 3–19. https://doi.org/10.1007/978-3-642-
19457-3_1

[82] Jur van den Berg, Ming Lin, and Dinesh Manocha. 2008. Reciprocal Velocity
Obstacles for Real-Time Multi-agent Navigation. ICRA, 1928–1935. https:
//doi.org/10.1109/ROBOT.2008.4543489

[83] Jur van den Berg, Jamie Snape, Stephen Guy, and Dinesh Manocha. 2011. Re-
ciprocal Collision Avoidance with Acceleration-Velocity Obstacles. 3475–3482.
https://doi.org/10.1109/ICRA.2011.5980408

[84] Jur van den Berg, David Wilkie, Stephen Guy, Marc Niethammer, and Dinesh
Manocha. 2012. LQG-obstacles: Feedback Control with Collision Avoidance
for Mobile Robots with Motion and Sensing Uncertainty. Proceedings - IEEE
International Conference on Robotics and Automation (05 2012), 346–353. https:
//doi.org/10.1109/ICRA.2012.6224648

[85] Quoc Van Tran and Hyo-Sung Ahn. 2020. Distributed Formation Control of
Mobile Agents via Global Orientation Estimation. IEEE Transactions on Control
of Network Systems 7, 4 (2020), 1654–1664. https://doi.org/10.1109/TCNS.2020.
2993253

[86] Bowen Wang, Yunlong Wang, Xinyou Qiu, and Yuan Shen. 2021. BLE Localiza-
tion With Polarization Sensitive Array. IEEE Wireless Communications Letters
10, 5 (2021), 1014–1017. https://doi.org/10.1109/LWC.2021.3055558

[87] Han Wang, Chen Wang, Chun-Lin Chen, and Lihua Xie. 2021. F-LOAM: Fast
LiDAR Odometry and Mapping. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (Prague, Czech Republic). IEEE Press,
4390–4396. https://doi.org/10.1109/IROS51168.2021.9636655

[88] Xinjie Wang, Jiaping Ren, Xiaogang Jin, and Dinesh Manocha. 2015. BSwarm:
Biologically-Plausible Dynamics Model of Insect Swarms. In Proceedings of the
14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los
Angeles, California) (SCA ’15). Association for Computing Machinery, New
York, NY, USA, 111–118. https://doi.org/10.1145/2786784.2786790

[89] Yixin Wang, Qiang Ye, Jie Cheng, and Lei Wang. 2015. RSSI-Based Bluetooth
Indoor Localization. In 2015 11th International Conference on Mobile Ad-hoc and
Sensor Networks (MSN). 165–171. https://doi.org/10.1109/MSN.2015.14

[90] Aaron Weinstein, Adam Cho, Giuseppe Loianno, and Vijay Kumar. 2018. Visual
Inertial Odometry Swarm: An Autonomous Swarm of Vision-Based Quadrotors.
IEEE Robotics and Automation Letters 3, 3 (2018), 1801–1807. https://doi.org/10.
1109/LRA.2018.2800119

[91] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2002. An Integrated
Experimental Environment for Distributed Systems and Networks. SIGOPS Oper.
Syst. Rev. 36, SI (Dec. 2002), 255–270. https://doi.org/10.1145/844128.844152

[92] KaminWhitehouse, Chris Karlof, and David Culler. 2007. A Practical Evaluation
of Radio Signal Strength for Ranging-Based Localization. SIGMOBILE Mob.
Comput. Commun. Rev. 11, 1 (jan 2007), 41–52. https://doi.org/10.1145/1234822.
1234829

[93] JinhuiWu, Dequan Zhang, Jie Liu, and XuHan. 2020. AMoment Approach to Po-
sitioning Accuracy Reliability Analysis for Industrial Robots. IEEE Transactions
on Reliability 69, 2 (2020), 699–714. https://doi.org/10.1109/TR.2019.2919540

[94] Fei Xiao, Shengkai Zhang, Sheyang Tang, Shaojie Shen, Huixin Dong, and Yi
Zhong. 2023. WiSion: BolsteringMAV 3D Indoor State Estimation by Embracing
Multipath of WiFi. IEEE Transactions on Vehicular Technology 72, 1 (2023), 253–
266. https://doi.org/10.1109/TVT.2022.3205710

[95] Yaxiong Xie, Jie Xiong, Mo Li, and Kyle Jamieson. 2018. mD-Track: Leveraging
Multi-Dimensionality for Passive Indoor Wi-Fi Tracking. The 25th Annual
International Conference on Mobile Computing and Networking (2018).

[96] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: A Fine-Grained Indoor Location
System. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (Lombard, IL) (nsdi’13). USENIX Association, USA,
71–84.

[97] Hao Xu, Luqi Wang, Yichen Zhang, Kejie Qiu, and Shaojie Shen. 2020. De-
centralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial
Swarm. In 2020 IEEE International Conference on Robotics and Automation (ICRA).
8776–8782. https://doi.org/10.1109/ICRA40945.2020.9196944

[98] Hao Xu, Yichen Zhang, Boyu Zhou, Luqi Wang, Xinjie Yao, Guotao Meng, and
Shaojie Shen. 2022. Omni-Swarm: A Decentralized Omnidirectional Visual-
Inertial-UWB State Estimation System for Aerial Swarms. IEEE Trans. Robotics
38, 6 (2022), 3374–3394. https://doi.org/10.1109/TRO.2022.3182503

[99] Yang Xu, Shupeng Lai, Jiaxin Li, Delin Luo, and Yancheng You. 2019. Concurrent
Optimal Trajectory Planning for Indoor Quadrotor Formation Switching. Jour-
nal of Intelligent & Robotic Systems 94 (05 2019). https://doi.org/10.1007/s10846-
018-0813-9

[100] Bo Yang, Jun Li, and Hong Zhang. 2021. Resilient Indoor Localization System
Based on UWB and Visual–Inertial Sensors for Complex Environments. IEEE
Transactions on Instrumentation and Measurement 70 (2021), 1–14. https://doi.
org/10.1109/TIM.2021.3101322

[101] Faheem Zafari, Athanasios Gkelias, and Kin K. Leung. 2019. A Survey of Indoor
Localization Systems and Technologies. IEEE Communications Surveys and
Tutorials 21, 3 (2019), 2568–2599. https://doi.org/10.1109/COMST.2019.2911558

[102] Zebra. 2018. Zebra UWB Technology, December 1, 2018, https://bit.ly/3Fji5Bs.
[103] Jitong Zhang, Mingrong Ren, PuWang, JuanMeng, and YumanMu. 2020. Indoor

Localization Based on VIO System and Three-Dimensional Map Matching.
Sensors 20, 10 (2020). https://doi.org/10.3390/s20102790

[104] Ji Zhang and Sanjiv Singh. 2014. LOAM: Lidar Odometry and Mapping in
Real-time. In Robotics: Science and Systems X, University of California, Berkeley,
USA, July 12-16, 2014, Dieter Fox, Lydia E. Kavraki, and Hanna Kurniawati
(Eds.). https://doi.org/10.15607/RSS.2014.X.007

[105] Jian Zhang, XiangyuWang, Zhitao Yu, Yibo Lyu, ShiwenMao, Senthilkumar CG
Periaswamy, Justin Patton, and Xuyu Wang. 2019. Robust RFID Based 6-DoF
Localization for Unmanned Aerial Vehicles. IEEE Access 7 (2019), 77348–77361.
https://doi.org/10.1109/ACCESS.2019.2922211

[106] Shiyu Zhao, Zhenhong Li, and Zhengtao Ding. 2019. Bearing-Only Formation
Tracking Control of Multiagent Systems. IEEE Trans. Automat. Control 64, 11
(2019), 4541–4554. https://doi.org/10.1109/TAC.2019.2903290

[107] Cao Zhiqiang, Ran Liu, Chau Yuen, Achala Athukorala, Benny Ng, Muraleetha-
ran Mathanraj, and U-Xuan Tan. 2021. Relative Localization of Mobile Robots
with Multiple Ultra-WideBand Ranging Measurements. 5857–5863. https:
//doi.org/10.1109/IROS51168.2021.9636017

22

https://doi.org/10.1109/TIE.2016.2521346
https://doi.org/10.1109/TRO.2013.2258733
https://doi.org/10.3390/rs13081483
https://doi.org/10.3390/rs13081483
https://doi.org/10.3390/robotics10010034
https://doi.org/10.3390/robotics10010034
https://doi.org/10.1109/TNET.2021.3051998
https://doi.org/10.1109/MCS.2016.2558401
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1109/ROBOT.2008.4543489
https://doi.org/10.1109/ICRA.2011.5980408
https://doi.org/10.1109/ICRA.2012.6224648
https://doi.org/10.1109/ICRA.2012.6224648
https://doi.org/10.1109/TCNS.2020.2993253
https://doi.org/10.1109/TCNS.2020.2993253
https://doi.org/10.1109/LWC.2021.3055558
https://doi.org/10.1109/IROS51168.2021.9636655
https://doi.org/10.1145/2786784.2786790
https://doi.org/10.1109/MSN.2015.14
https://doi.org/10.1109/LRA.2018.2800119
https://doi.org/10.1109/LRA.2018.2800119
https://doi.org/10.1145/844128.844152
https://doi.org/10.1145/1234822.1234829
https://doi.org/10.1145/1234822.1234829
https://doi.org/10.1109/TR.2019.2919540
https://doi.org/10.1109/TVT.2022.3205710
https://doi.org/10.1109/ICRA40945.2020.9196944
https://doi.org/10.1109/TRO.2022.3182503
https://doi.org/10.1007/s10846-018-0813-9
https://doi.org/10.1007/s10846-018-0813-9
https://doi.org/10.1109/TIM.2021.3101322
https://doi.org/10.1109/TIM.2021.3101322
https://doi.org/10.1109/COMST.2019.2911558
https://doi.org/10.3390/s20102790
https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.1109/ACCESS.2019.2922211
https://doi.org/10.1109/TAC.2019.2903290
https://doi.org/10.1109/IROS51168.2021.9636017
https://doi.org/10.1109/IROS51168.2021.9636017

	Abstract
	1 Introduction
	2 Terminology, Problem Statement
	3 Swarm-Merging (SwarMer)
	4 An Evaluation
	4.1 Dead reckoning
	4.2 Experimental Results

	5 A Comparison
	6 An Implementation
	7 Related Work
	8 Conclusions and Future Research
	9 Acknowledgments
	References

