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ABSTRACT
One may construct a 3D multimedia display using miniature drones
configured with light sources, Flying Light Specks (FLSs). Swarms
of FLSs localize to illuminate complex 3D shapes and animated
sequences consistent with the coordinates of points in a point cloud.
This requires FLSs to accurately measure their pose relative to one
another using sensors such as cameras. Such sensors have a sweet
range in which they provide the highest accuracy. A challenge is
how an FLS tracks another FLS outside its sensor’s sweet range,
dictated by the point cloud data. We address this challenge by
proposing a novel technique called Swazure that solves the missing
sensor data using cooperation among FLSs. It implements physical
data independence by abstracting the physical characteristics of
the sensors, making point cloud data independent of the sensor
hardware. The size of an FLS relative to the minimum distance
between points of a point cloud is an important parameter. With
medium-sized FLSs, Swazure is able to position 100% of the FLS’s
neighbors. Larger FLS sizes may result in potential obstructions
that prevent Swazure from quantifying relative pose. We present
two heuristics, Move Obstructing and Move Source, to address this
limitation. Our experimental results show the superiority of the
Move Obstructing heuristic which resolves approximately 30% of
obstructions in the worst case scenario.
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1 INTRODUCTION
An approach to realize a 3D multimedia display [1, 23] is to use
drones configured with RGB lights, Flying Light Specks (FLSs).
Swarms of FLSs will localize [2, 3] to illuminate complex shapes [9,
19] and provide haptic interactions [5, 6, 8]. These displays have
diverse applications, ranging from entertainment to education and
healthcare [19].

A shape is a 3D point cloud. Each FLS in a 3D multimedia display
is assigned a point of a point cloud indicating the position of the
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(a) Chess piece, 408. (b) Palm, 725. (c) Kangaroo, 972.

(d) Dragon, 1147. (e) Skateboard, 1372. (f) Racecar, 3720.

Figure 1: Six point clouds and their number of FLSs.

FLS in shape. FLSs are required to localize themselves to illuminate
the shape. Each FLS lacks a line of sight in an indoor setting with a
GPS satellite. Instead, it adjusts its position relative to its neighbors
using sensors such as a camera [2, 3]. The neighbors of an FLS and
the distance between the FLS and its neighbors are dictated by the
geometry of the point cloud. To illuminate various shapes, FLSs
are required to measure their relative position independent of the
geometry of the point cloud. An approach may configure each FLS
with a sensor at the granularity required by the shape. For example,
if the minimum distance between the points of a point cloud is
7 millimeters and an FLS represents a point, then the sensors are
required to support measuring distances as short as 7 millimeters.
This form of data dependency is too rigid for several reasons. First,
a point cloud with a shorter minimum distance (say 5 millimeters)
will require either a change or an upgrade of the sensors mounted
on the FLSs. Second, a sensor that provides 7-millimeter accuracy
may either not be available or be prohibitively expensive.

This study introduces the concept of physical data Independence
for FLSs and 3D displays. The concept implies that the physical
hardware of FLSs is independent of the characteristics of the data
(point clouds) that they illuminate. Swarm measurement, Swazure,
is an algorithm that implements this concept by using an abstrac-
tion of a sensor consisting of a blind, sweet, and decaying range.
Devices in the blind range are unable to quantify their relative
pose to one another. Devices in the sweet range may quantify their
relative pose with high accuracy at a fixed granularity. Devices in
a decaying range can do so with some noise that impacts accuracy,
granularity, or both. This noise may be a fixed function of a physical
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characteristic, such as the distance between FLSs. Swazure uses
the abstraction in combination with the information exchanged
by a cooperative swarm of devices to enable devices in both the
blind and the decaying range to quantify their relative pose at the
accuracy of the sweet range.

To illustrate, assume each FLS is configured with a Raspberry
camera and an ArUco marker to compute its pose relative to its
neighbor [3]. The camera’s wide lens is unable to measure distances
shorter than 5 centimeters. This is the blind range of the wide lens.
This lens is most accurate in measuring distances between 6 to 8
centimeters at millimeter granularity. This is the sweet range of
the lens. Beyond 8 centimeters, the error in measured distances
increases as a function of the distance between the lens and the
marker, the decaying range of the wide lens. Swazure enables a
swarm of FLSs to cooperate to enable those FLSs in either the blind
or the decaying range to quantify their relative pose at the accuracy
of the sweet range. We demonstrate this with point clouds that
require FLSs to measure distances of approximately 7 millimeters.

Contributions of this study include:

• Swazure. A technique that uses the communication capabil-
ity of a swarm to estimate relative pose with high accuracy
for distances shorter than the minimum range of the FLS
sensor, its blind range. (Section 3.)

• Move Obstructing and Move Source. Two techniques that
enable Swazure to minimize the impact of FLSs obstructing
the line of sight. (Section 3.1.)

• An evaluation of the techniques and their tradeoffs. Move
Obstructing is superior to Move Source. (Section 4.)

• Open source software implementations of Swazure and its
data set at https://github.com/flyinglightspeck/Swazure.

The rest of this paper is organized as follows. Section 2 introduces
the terminology used in this paper. Section 3 details Swazure. We
quantify tradeoffs associated with Swazure in Section 4. Section 5
presents related work. Brief conclusions are presented in Section 6.

2 TERMINOLOGY
We represent FLSs as spheres. Given a point cloud illuminated by
FLSs, centers of FLSs are placed at the coordinate of each point of
the point cloud. We determine the radius 𝑟 of FLSs as a ratio 𝛽 of
the smallest distance Δ𝑚𝑖𝑛 between a pair of points, 𝑟 = 𝛽 × Δ𝑚𝑖𝑛 .

We represent the estimated relative pose of FLS 𝑓1 to FLS 𝑓𝑛
using a position vector 𝜌1,𝑛 where 𝑓𝑛 is the vector’s head and 𝑓1 at
the origin is its tail. Note that 𝜌1,𝑛 = −𝜌𝑛,1. To distinguish between
estimated and ground truth vectors, we represent the relative pose
of corresponding FLSs in the ground truth by 𝜌1,𝑛 . This vector
defines (Δ, 𝜃, 𝜙) in the spherical coordinate system. Δ is the distance
between 𝑓1 and 𝑓𝑛 . It is defined by the magnitude of 𝜌1,𝑛 , Δ =

| |𝜌1,𝑛 | |2 =
√︁
𝑥2 + 𝑦2 + 𝑧2. 𝜃 , inclination, is the angle between the

vector and the z-axis.𝜙 , azimuth, is the angle between the projection
of the vector on the x-y plane and the x-axis.

We assume the sensor used by a source FLS 𝑓1 to measure its
pose relative to a target FLS 𝑓𝑛 has a fixed range 𝑅 beyond which it
cannot measure its pose. It is possible for 𝑅 to be unbounded, i.e.,
𝑅 = ∞. Swazure divides 𝑅 into three segments: blind, sweet, and
decaying. We define these in turn.

(a) (b)

Figure 2: (a) Source FLS uses a sweet neighbor to compute
its pose relative to a blind neighbor, 𝜌1,3 = 𝜌1,2 + 𝜌2,3. (b) An
obstructing FLS blocks the line of sight between the sweet
and blind neighbor.

When 𝑓1 is in the blind range of 𝑓𝑛 , 𝑓1 may not measure its
distance relative to 𝑓𝑛 at all. 𝑓1 is termed a blind neighbor of 𝑓𝑛 .
It may have many such neighbors. The characteristics of a point
cloud dictate the exact number of neighbors for 𝑓1.

When the distance separating 𝑓1 from 𝑓𝑛 is in the sweet range
of 𝑓1’s sensor, 𝑓1 may measure its pose relative to 𝑓𝑛 with a high
accuracy. 𝑓𝑛 is termed a sweet neighbor of 𝑓1.

When the distance between 𝑓1 and 𝑓𝑛 is in the decaying range
of 𝑓1’s sensor, 𝑓1 is able to measure its pose relative to 𝑓𝑛 with an
error that is a function of a physical property between 𝑓1 and 𝑓𝑛 .
𝑓𝑛 is termed a decaying neighbor of 𝑓1. In this paper, we assume
distance as the physical property.

We assume the technique used to identify sweet neighbors is
different than the technique used to quantify the relative pose.
Hence, it is possible for a blind FLS pair, 𝑓1 and 𝑓𝑛 , to share a sweet
neighbor with one FLS (either 𝑓1 or 𝑓𝑛) lacking line of sight to the
sweet neighbor. Sweet neighbors may be detected based on FLSs
exchanging messages with one another. The sensor used to quantify
orientation may be a camera. However, 𝑓1’s camera may lack line
of sight with the sweet neighbor. One reason may be a different
FLS is in between 𝑓1 and its sweet neighbor, obstructing 𝑓1’s line of
sight to 𝑓𝑛 ’s ArUco marker. Figure 2b illustrates this scenario with
𝑓1 (blue) and 𝑓3 (purple) FLSs using the messages sent by 𝑓2 (green)
FLS to identify it as a sweet neighbor. However, the red FLS blocks
the line of sight of the purple FLS, preventing it from quantifying
its pose relative to the green FLS.

3 SWAZURE
Swazure employs FLSs in the sweet range of one another to compute
the relative pose of a source FLS, 𝑓1, to a target FLS, 𝑓𝑛 . If 𝑓𝑛 is a sweet
neighbor of 𝑓1, then 𝑓1 computes its pose using its tracking sensor
directly. Otherwise, it identifies the intermediate FLSs within its
sweet range and communicates with them to compute its relative
pose to 𝑓𝑛 as follows. First, it computes Ω1 = (𝑓1, 𝑓2, ..., 𝑓𝑛) as a
sequence of FLSs that defines a unique sweet path from the source
(𝑓1) to the target (𝑓𝑛). In other words, the distance between 𝑓𝑖 and
𝑓𝑖+1 is in the sweet range of 𝑓𝑖 ’s tracking device. The relative pose
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between the source and target FLSs is computed by adding1 the
relative poses along the edges of this path, 𝜌1,𝑛 =

∑ |Ω1 |−1
𝑘=1 𝜌𝑘,𝑘+1.

There may be 𝜆 unique paths connecting 𝑓1 to 𝑓𝑛 . Each is iden-
tified by a unique Ω𝑖 , 1 ≤ 𝑖 ≤ 𝜆. Ω𝑖 consists of |Ω𝑖 | FLSs. We
concpeturalize it as a graph with |Ω𝑖 | vertices and |Ω𝑖 | − 1 edges.
The edges are from 𝑓1 to 𝑓2, 𝑓2 to 𝑓3, 𝑓 |Ω𝑖 |−1 to 𝑓 |Ω𝑖 | . Each edge has
a length, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑖 , 𝑓𝑖+1), denoting the distance between two FLSs
in a hop. Each Ω𝑖 consists of |Ω𝑖 | − 1 hops and has a total length
𝑙𝑖 =

∑ |Ω𝑖 |−1
𝑗=1 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑗 , 𝑓𝑗+1).

With 𝜆 candidate paths, Swazure may select the shortest path
to estimate the pose between two blind FLSs. Shortest is defined
as either the fewest number of hops (Fewest-Hops) or the shortest
length (Shortest-Length).

To illustrate, consider a path Ω1 consists of two hops, Ω1 =

(𝑓1, 𝑓2, 𝑓3). See Figure 2a. 𝑓1 computes its relative pose to its blind
neighbor 𝑓3, 𝜌1,3, by summing its relative pose to its sweet neighbor
𝑓2 (𝜌1,2) with 𝑓2’s relative pose to its sweet neighbor 𝑓3 (𝜌2,3), i.e.,
𝜌1,3=𝜌1,2 + 𝜌2,3. This path consists of two hops, 𝑓1 to 𝑓2 and 𝑓2 to
𝑓3. Each hop has a fixed length defined by the magnitude of its
corresponding vector, e.g., length(𝑓1,𝑓2)=| |𝜌1,2 | |2. The total length
𝑙1 of the path is the sum of the length of 𝑓1 to 𝑓2 and the length of
𝑓2 to 𝑓3.

3.1 No Sweet Paths
The geometry of a point cloud dictates the number of sweet paths
between two blind FLSs. Each path may have one or many obstruct-
ing FLSs. 𝛽 is an important parameter, see Figure 3a. It is the ratio of
the radius of an FLS to the minimum distance between them, Δ𝑚𝑖𝑛 .
It dictates both the number of sweet paths with an obstructing
FLS and the number of obstructing FLSs for that path. To illustrate,
Figure 3b shows the percentage of sweet paths with an obstructed
FLS for three different shapes as a function of 𝛽 . It highlights the
geometry of a shape as a significant factor. While almost all sweet
paths are obstructed with the Skateboard and 𝛽=0.5, approximately
60% are obstructed with the Kangaroo and the same2 𝛽 value. There
is also a significant variation in the number of obstructing FLSs
per sweet path. The box plot for the Skateboard highlights this
variation. See Figure 3c.

In the absence of sweet paths, Swazure may use decaying paths.
In other words, the path between the source and target FLS may
use neighboring FLSs in the decaying range. Figure 4 shows an
example with 𝑓1 (blue) FLS wanting to estimate its relative pose to
its blind neighbor 𝑓4 (purple). 𝑓5 (green) FLS is a sweet neighbor of 𝑓1.
However, 𝑓1 may not use this neighbor because it is a blind neighbor
of 𝑓4. Hence, 𝑓1 uses 𝑓2 with a decaying hop. The subsequent hops
from 𝑓2 to 𝑓3 and 𝑓3 to 𝑓4 are sweet. Note that 𝑓2 is a sweet neighbor
of 𝑓4. However, 𝑓5 (green) is blocking its line of sight with 𝑓4. This
technique results in a high error in the computed relative pose as
the error increases as a function of the distance between FLSs. Note
that with this technique, Swazure may use a combination of sweet
and decaying hops.

1Simply add the x,y,z coordinates of the vectors.
2With 𝛽 = 0.5, the number of FLSs that are tightly packed next to one another equals
the number of shortest distance paths between FLSs. This number is 9 with the Chess
piece, 12 with the Dragon, 18 with the Kangaroo, 15 with the Palm, 57 with the Race
Car, and 22 with the Skateboard.

It is possible that there are no paths between two blind neighbors.
This is especially true with high values of 𝛽 , 𝛽 ≥0.4. The first two
columns of Table 1 show the percentage of blind neighbors with no
paths for different shapes. While it is zero with the Palm and the
Dragon, it is as high as 31% with the Chess piece and 𝛽=0.5. (The
percentage of blind neighbors with no path is zero with 𝛽 ≤0.3.)
The last three columns of Table 1 show the percentage of decaying
paths employed by Swazure with different shapes. They highlight
the significance of the geometry of a shape and 𝛽 .

Table 1: % blind neighbors with no/decaying paths.

No Paths Decaying Paths
𝛽=0.4 𝛽=0.5 𝛽=0.3 𝛽=0.4 𝛽=0.5

Chess Piece 2.96% 30.88% 0 1.27% 16.77%
Palm 0 0 0 1.15% 11.3%
Kangroo 0.09% 0.38% 0.38% 0.97% 2.08%
Dragon 0 0 0.43% 9.15% 31.01%
Skateboard 0.36% 17.92% 0 0 12.42%
Race Car 0 0.03% 0 0 1.01%

Below, we describe two heuristics to reduce the number of blind
neighbors with no paths and replace decaying paths with sweet
ones.

3.2 Move Obstructing
A sweet path can be created between a blind pair by moving the
FLSs that obstruct the line of sight between FLSs and their sweet
neighbors. In this technique, FLSs detect obstructing FLSs and com-
mand them to move along a vector. Each obstructing FLS moves
the minimum distance required to resolve the line of sight in a
direction perpendicular to the line connecting the desired FLSs.

More formally, we define the line of sight as a line from the
center of a source FLS 𝑓1 to its sweet neighbor. An obstructing
FLS intersects this line; see Figure 6a. We compute an obstruction-
free circle around the obstructing FLS. The center of this circle
is the closest point on the line to the center of the obstructing
FLS. The radius of this circle is equal to the radius of the FLS. We
identify the collision-free portions of this circle. If none exists, then
this technique fails. Otherwise, we move the obstructing FLS to
a collision-free portion that is closest to its current location. To
identify a collision-free portion, we consider a collision sphere
for each of the obstructing FLS’s neighbors. The radius of these
spheres is twice that of the FLSs. We compute the intersection of
these spheres with the obstruction-free circle, identifying them
as potential collisions. We remove this portion of the circle. Its
remainder is the collision-free portion.

The minimum and maximum vector for moving the FLS are
defined as𝑑𝑚𝑖𝑛 = ( 𝑟

|𝑐𝑂−𝑐𝑂𝐹 | −1) (𝑐𝑂−𝑐𝑂𝐹 ) and𝑑𝑚𝑎𝑥 = ( 𝑟
|𝑐𝑂−𝑐𝑂𝐹 | +

1) (𝑐𝑂 − 𝑐𝑂𝐹 ). The magnitude of these vectors bound the minimum
and maximum distance moved by the obstructing FLS. See Figure 6.

Table 2 shows This technique is effective in converting no paths
to sweet paths. The values in the first two columns of Table 2
are lower than those in Table 1. It is also effective in converting
decaying paths into sweet paths, resulting in lower percentages in
the last three columns of Table 2 when compared with Table 1.
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(a) Different 𝛽 values. (b) Percentage of obstructing paths. (c) Number of FLSs in an obstruction.

Figure 3: (a) 𝛽 is the ratio of FLS radius to the minimum distance Δ𝑚𝑖𝑛 between FLSs, it impacts (b) the percentage of obstructed
paths and (c) the number of FLSs participating in obstruction.

Figure 4: Source FLS 𝑓1 uses a decaying hop followed by two
sweet hops to compute its pose relative to its blind neighbor
𝑓4. 𝜌1,4 = 𝜌1,2 + 𝜌2,3 + 𝜌3,4.

(a) Before.

(b) Move Obstructing.

(c) Move Source.

Figure 5: Move Obstructing and Move Source.

3.3 Move Source
This technique finds a common sweet neighbor and moves the
source to establish a path. The source FLS starts to explore the area
in its vicinity until it finds at least one common sweet neighbor
with the target FLS. It may explore a prespecified set of directions. If
it encounters a collision in a certain direction, it will stop exploring

(a) Obstructing FLS.

(b) Move along 𝑑𝑚𝑖𝑛 .

(c) Move along 𝑑𝑚𝑎𝑥 .

Figure 6: The minimum and maximum distance an obstruct-
ing FLS has tomove to resolve the obstruction using theMove
Obstructing heuristic.

Table 2: % blind neighborswith no/decaying paths usingMove
Obstructing.

No Paths Decaying Paths
𝛽=0.4 𝛽=0.5 𝛽=0.3 𝛽=0.4 𝛽=0.5

Chess Piece 0.07% 21.43% 0 0.02% 11.65%
Palm 0 0 0 0.13% 6.3%
Kangroo 0.01% 0.26% 0 0.02% 1.17%
Dragon 0 0 0 0.51% 23.34%
Skateboard 0.02% 12.85% 0 0 8.79%
Race Car 0 0.02% 0 0 0.74%

that direction. A threshold bounds the distance explored in each
direction. After finding a common sweet neighbor, the source FLS
uses it to compute its pose relative to the target FLS.

Our specific implementation is as follows. The source FLS con-
tacts the target FLS for its sweet neighbors. It identifies how many
of these neighbors are in its line of sight when it adjusts its posi-
tion by a vector with the magnitude=𝛿R where R is the radius of
its sphere. It considers 26 directions using itself as the center of a
logical sphere. These include movement along the 3 primary axes,
along the diagonals in the planes defined by these axes, and along
the space diagonals that span across all three axes. It starts with
𝛿=1 and increments it by 1. A direction is dropped from considera-
tion when it results in a collision. It terminates either as soon as
it identifies a sweet path to its target or some threshold T on the
value of 𝛿 is reached.

We considered different threshold values ranging from 2 to 10.
Table 3 shows the results with T=10. A higher value of T enables a
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Table 3: % blind neighborswith no/decaying paths usingMove
Source with T=10.

No Paths Decaying Paths
𝛽=0.4 𝛽=0.5 𝛽=0.3 𝛽=0.4 𝛽=0.5

Chess Piece 1.55% 20.42% 0 0.68% 12.83%
Palm 0 0 0 0.65% 7.58%
Kangroo 0.08% 0.37% 0.26% 0.78% 1.67%
Dragon 0 0 0.24 5.63% 22.44%
Skateboard 0.18% 13.52% 0 0 9.22%
Race Car 0 0.01% 0 0 0.7%

source FLS to search a larger space around itself. This increases the
chances of it finding a sweet path that terminates its search. Move
Source reduces the percentage of blind neighbors with no paths.
Compare the first two columns of Table 1 with those of Table 3. It
also reduces the number of decaying paths by converting them to
sweet ones. Compare the last three columns of Table 1 with those
of Table 3.

3.4 A Comparison
Tables 2-3 show Move Obstructing is superior to Move Source. It
reduces the percentage of blind neighbors with no paths. In addition,
it replaces a higher percentage of decaying paths with sweet ones.
Table 4 shows Move Obstructing results in a significantly lower
distance moved by FLSs. When considering the maximum distance
moved, the difference is orders of magnitude lower with Move
Obstructing.

Table 4: Average (max) distance (cm) of FLSs’ movement,
𝛽=0.5.

Move Move Source
Obstructing T=2 T=10

Chess Piece 0.34 (1.51) 23.7 (45.4) 150.7 (609)
Palm 0.54 (2.34) 25.1 (42.7) 155 (574.4)
Kangroo 0.62 (2.5) 25.7 (44.14) 215.3 (745.2)
Dragon 0.55 (2.72) 23.8 (46.3) 176.8 (744.5)
Skateboard 0.43 (2.26) 22.1 (43.6) 109.7 (622)
Race Car 0.3 (1.49) 20.9 (45.3) 88.5 (709.8)

3.5 Motion Estimation: Velocity and
Acceleration

An FLS can estimate the velocity and/or acceleration of another
FLS using a sequence of position observations. It can estimate its
velocity by computing the derivative of positionwith respect to time.
Using finite differences we have: 𝑣 (𝑡𝑖 ) ≈ 𝑝 (𝑡𝑖+1 )−𝑝 (𝑡𝑖−1 )

2Δ𝑡 where Δ t
is the time interval between measurements. Similarly, acceleration
is 𝑎(𝑡𝑖 ) ≈ 𝑣 (𝑡𝑖+1 )−𝑣 (𝑡𝑖−1 )

2Δ𝑡 .
In Swazure, when an FLS (𝑓1) wants to estimate the velocity of

another FLS (𝑓3) to which it does not have a line of sight, it communi-
cates with an alternative FLS (𝑓2) to receive position measurements.
𝑓2 computes the position of 𝑓3 and transmits the sequence of posi-
tion observations to 𝑓1. There are two types of delay in this process:

the delay in computing the position based on sensory data and
the delay in communication. To compensate for these delays, the
receiver FLS can maintain a sequence of recent samples and pre-
dict the current velocity or acceleration using extrapolation and
filtering techniques such as the Kalman filter [13].

4 EVALUATION
We simulated Swazure using FLSs configured with ArUco markers
and a Raspberry camera [3]. The camera is small, lightweight, and
ready for use with a drone. We use its wide lens with a minimum
focus range of 5 cm. Smaller distances are in its blind range. Its
sweet range is 6-8 cm. Beyond 8 cm, its percentage error in pose
increases as a function of the distance between the wide lens and
the ArUco marker [3]. We model this error using the following
quadratic function: 𝑓 (𝑥) = 0.00180987𝑥2−0.02756392𝑥+0.11561755.
The simulator abstracts FLSs as spheres with radius 𝑟 . It assumes a
camera and an identifying ArUco marker are placed on the sphere’s
surface, enabling an FLS to quantify its relative pose to another
FLS.

The radius 𝑟 determines the amount of obstruction between
FLSs. With 𝛽 > 0.5, a pair of FLSs will collide with one another.
The simulator removes the colliding FLSs prior to computing its
metrics. Our experiments used collision-free settings with 𝛽 ≤ 0.5.

The simulator starts by reading a point cloud, representing each
point as an FLS. It computes the pairwise distance between the
coordinates of FLSs. Next, it determines the FLS radius using the
input 𝛽 value. Subsequently, the simulator adjusts the pairwise
distances to reflect the distance between the surface of the FLS
spheres. This is the pose measured using a Raspberry camera and
an ArUco marker. For each FLS, the simulator computes its blind,
sweet, and decaying neighbors.

The simulator constructs a graph 𝐺 = (𝑉 , 𝐸) where 𝑉 is the set
of nodes, each representing an FLS, and 𝐸 is the set of edges that
connect each FLS to its neighbors. Each edge has a weight equal to
the Euclidean distance between FLSs and is labeled as blind, sweet,
or decaying according to the distance between FLSs. The simulator
provides interfaces to search this graph to find the shortest path
between a given pair of FLSs. The interface allows optimization of
the number of hops/edges in a path or the length of the path.

An experiment starts with the position of the FLSs in the ground
truth. Each FLS with a blind neighbor uses Swazure to compute
its pose relative to every blind neighbor. Subsequently, it measures
the error in the estimated pose with the ground truth. (See next
section.)

The shapes considered in this paper have the same FLS density,
defined as the number of FLSs per unit of surface area [3]. The
mean distance between FLSs for all shapes is between 0.6 to 0.7 cm.
Quantifying error: With multimedia shapes, a point cloud provides
the ground truth in the relative pose between a source and a target
FLS. This is a position vector per definitions of Section 2. We com-
pare the magnitude of this vector with the magnitude of Swazure’s
estimated vector to quantify the error in distance. The error in angle
may be computed using the dot (scalar) product3 of the two vectors.
To compute the error in 𝜃 and 𝜙 , we convert the estimated truth

3𝜌1,2 .𝜌1,2 = | |𝜌1,2 | |2 . | |𝜌1,2 | |2 .𝑐𝑜𝑠 (𝛼 ) and solve for 𝛼 .
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vector and its corresponding ground truth vector into their spheri-
cal coordinates; see the first paragraph of Section 2. The difference
between their 𝜃 and 𝜙 is the observed error.

4.1 Experimental Results
This section evaluates Swazure 1) using Fewest-Hops versus Shortest-
Length, and 2) moving an obstructing FLS versus a source FLS.

(a) Fewest-Hops. (b) Shortest-Length.

Figure 7: Average percentage error in estimated distance (Δ).

4.1.1 Fewest-Hops versus Shortest-Length. Figure 7 shows the av-
erage percentage error with Fewest-Hops and Shortest-Length as
a function of 𝛽 . Note that the scale of the y-axis is lower than 3%
with both techniques and all shapes with 𝛽 ≤ 0.3. Both incur the
highest error with the Dragon and 𝛽=0.5. This is because Swazure
uses decaying paths extensively with the Dragon; see the last col-
umn of Table 1. While Shortest-Length has a percentage error of
7.5%, Fewest-Hops has a percentage error of 28.5%. We attribute
the superiority of Shortest-Length to the geometry of the Dragon.

Figure 9 shows the maximum percentage error in the distance
with three different4 shapes. The y-axis is log-scaled. In general,
Shortest-Length provides a lower maximum error. The trends with
the two techniques are similar due to their use of decaying hops.
The x-axis of Figure 8 is the error of all considered paths with the
Dragon. Its y-axis is the number of times each error is incurred. Both
Fewest-Hops and Shortest-Length exhibit a long tail phenomenon
by using hops with a high percentage error. These explain the high
maximum percentage error in Figure 9.

With the angles 𝛼 , 𝜃 , and 𝜙 , the maximum error is 180 degrees.
The average error in these angles is less than 1 degree with 𝛽 ≤ 0.4
4The other shapes are similar to the Skateboard with the knee of the curve (𝛽=0.3 and
0.4) close to zero except for 𝛽=0.5.

Figure 8: Distribution of observed percentage error in dis-
tance measurement.

(a) Fewest-Hops. (b) Shortest-Length.

Figure 9: Maximum percentage error in estimated distance
(Δ).

and all shapes except the Dragon and the Skateboard, see Figure 10
for 𝛼 . With the two shapes, Shortest-Length provides more accurate
angles with 𝛽 = 0.5.

(a) Fewest-Hops. (b) Shortest-Length.

Figure 10: Average 𝛼 between ground truth pose and esti-
mated pose.

4.1.2 Move Obstructing and Move Source. These techniques en-
hance the Shortest-Length and Fewest-Hops in two ways: 1) by
converting decaying hops into sweet hops to reduce error, and 2)
by enabling blind pairs that could not estimate their pose due to
an obstructing FLS. Both techniques provide the highest benefit
with 𝛽=0.5. All shapes use a decaying path with this 𝛽 value, see
last column of Table 1. Both techniques minimize this use without
eliminating it altogether; see the last column of Tables 2-3. Hence,
typically the average percentage error in distance is reduced while
the maximum error observes little to no improvement. The exact
amount of reduction depends on the geometry of a shape. For exam-
ple, with the Kangaroo, the percentage improvement in accuracy
ranges from 0.7% with Move Source and 𝑇=2 to 8.5% with Move
Obstructing. With a challenging shape like the Dragon, the per-
centage improvement is 8.2% and 19.2%, respectively. Even though
the percentage improvements are significant, the change in abso-
lute values is small. For example, with the Dragon and its 19.2%
improvement, the percentage error improves from 7.5% to 6%. We
speculate the significance of this is application specific.

The observations with 𝛼 , 𝜃 , and 𝜙 are similar to those with
distance: A significant percentage change in the average error with
little to no change in the maximum error. The absolute change in
the average angle error is typically less than 1◦.

5 RELATEDWORK
To the best of our knowledge, Swazure is novel and has not been
described in the literature.

Physical data independence is an important concept in the area of
databasemanagement systems [7]. It means the organization of data
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is separate and independent of a physical storage device, i.e., tape,
disk, DRAM, etc.We are adopting this concept for use with FLSs and
3D displays. Swazure is a novel algorithm that measures relative
poses independently of the physical sensor. It enables devices to
cooperate to compute their relative pose at ranges that are below
the minimums supported by a physical sensor.

Swazure is a building block of a localization technique such
as SwarMer [2] or Swarical [3] for illuminating point clouds or
those for robot self exploration and mapping (SLAM) [11, 12, 18,
21]. A localization technique typically addresses challenging topics
such as drone failure [4], scalability, and a global reference frame,
among others. It relies on inter-FLS position measurements. These
position measurements are provided by Swazure. Swazure is a
simple building block that enables a robot to quantify its pose
relative to another robot or an identified landmark. We are not
aware of a localization technique that (a) classifies the range of a
sensor as blind, sweet, and decaying or (b) uses the sweet range of
a sensor to quantify a pose for a blind range.

The use of communication for pose estimation in drones is well-
established, as demonstrated in studies such as [10, 14–16, 20, 22,
24]. The most relevant is [10], which utilizes fiducial markers and
cameras mounted on UAVs. This study identifies a blind range
for the camera and operates under the assumption of two drones.
When one drone becomes blind, the other tracks it and provides
the relative pose information. While it does not consider more than
2 drones, its extensions to 3 or more drones may use Swazure to
provide the relative pose of multiple drones. Swazure also uses
communication between FLSs. It is different and novel in several
ways. First, it abstracts the range of a sensor into blind, sweet, and
decaying, using a sweet path to bypass blind and decaying ranges
to enhance the accuracy of estimated poses. These paths consist
of at least one intermediary FLS, requiring the participation of a
minimum of 3 FLSs. The number of FLSs in a path depends on
the geometry of a shape and the value of 𝛽 . For example, with the
Dragon and 𝛽=0.5, an average of 4.3 FLSs and a maximum of 14 FLSs
constitute a sweet path. Second, Swazure includes two techniques,
Move Obstructing and Move Source, to facilitate line of sight in the
presence of obstructions.

6 CONCLUSIONS
Swazure provides for the physical independence of an FLS from
the operating range of its sensor. It enables the FLS to compute
its relative pose to another FLS at ranges not supported by its
sensor. It realizes this by abstracting the range of a sensor into blind
(range without the ability to quantify pose), sweet (most accurate
range), and decaying (range with an increased noise as a function
of some parameter such as distance). Two FLSs in a blind range
compute their relative pose with a high accuracy by computing a
path of intermediary FLSs that are sweet neighbors. When no sweet
paths are available, Swazure may use a path that involves decaying
neighbors or a combination of sweet and decaying neighbors. We
introduced Fewest-Hops and Shortest-Length as a technique to
select between multiple candidate paths. Experimental results show
the superiority of Shortest-Length. We identified the size of an
FLS relative to the minimum required distance between FLSs as
an important parameter. Their ratio, 𝛽 , impacts the number of
neighboring FLSs in a blind range with no sweet paths due to

obstruction. We introduced two techniques, Move Obstructing FLS
and Move Source FLS, to address this challenge. An evaluation of
these techniques shows the superiority of Move Obstructing.
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