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ABSTRACT

Emerging applications with Flying Light Specks (FLS) require ef-
ficient network traffic exchange among nodes. To evaluate the
suitability of various wireless technologies and configurations for
specific applications, we designed and developed NS-FLS, a plat-
form that allows researchers to test FLS mobility, traffic patterns,
network configurations, and gather statistical performance met-
rics. We build NS-FLS on ns-3 and build graphical interfaces for
user-friendly operation. We validated NS-FLS with traces from a
real FLS application, demonstrating its capacity to assess network
performance.
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1 INTRODUCTION

Flying Light Specks (FLS) are miniature drones equipped with lights
capable of displaying diverse colors and textures [3]. These drones
can detect user touch and provide kinesthetic feedback by exerting
force [2, 3]. Their unique capabilities enable applications ranging
from immersive, FLS-enhanced tabletop gaming, where virtual char-
acters come to life, to healthcare, where FLS technology assists in
real-time MRI analysis. Creating 3D visualizations with FLS typi-
cally requires numerous devices, sometimes in the millions.

Many FLS applications depend heavily on real-time communica-
tion, both for receiving instructions from a central orchestrator and
for sharing sensory data among devices [4]. For instance, an FLS
may detect obstacles and broadcast this data to neighboring units.
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Figure 1: System Architecture of NS-FLS.

Supporting such communication demands a robust wireless net-
work to ensure efficient real-time data exchange. Previous study has
reviewed short-range communication technologies like Wi-Fi and
Bluetooth that might support FLS applications [6]. The choice of
technology depends on factors like drone mobility, traffic patterns,
power requirements, and latency for the FLS application.

In this work, we build NS-FLS, a Network Simulator tailored for
FLS systems and built on the widely used ns-3 platform [5]. NS-FLS
allows researchers to input movement patterns and timed user traf-
fic, simulating FLS communication. These traces could be generated
from real FLS applications. Users can configure wireless technolo-
gies for the network simulation. NS-FLS currently supports popular
network technology of Wi-Fi, Bluetooth, and Zigbee. NS-FLS will
execute the simulation and return metrics such as packet loss, delay,
and throughput offered as feedback.

With NS-FLS, a researcher could assess any FLS application’s
network performance under varied conditions. To showcase the
usage of NS-FLS, we process a real FLS trace generated by Closest
Available Neighbor First (CANF), an application that allows FLSs to
form groups, as described in [1]. NS-FLS demonstrates its capabil-
ity to evaluate the applicability and performance of several Wi-Fi
variants for this application. Moving forward, we aim to enhance
NS-FLS by incorporating new wireless technologies, power-related
metrics, and enabling user-defined protocols.

The following sections are organized as follows. §2 presents an
overview of NS-FLS. §3 describes how we implement each NS-FLS
component. §4 provides preliminary results of using NS-FLS to
evaluate real FLS application traces. We will discuss the future
directions for NS-FLS development in §5.

2 SYSTEM ARCHITECTURE

We present overall architecture for NS-FLS in Figure 1. It consists of
five major components. Three components control simulation be-
havior. Mobility Model can model the movement of FLSs and record
the location information dynamically. Traffic Controller manages
message exchange between FLS devices, and the Network Manager
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configures wireless technology and parameters (e.g., experiment-
specific parameters and noise). These components relay configura-
tions and runtime information to the Simulation Engine, currently
using ns-3 [5] to conduct simulations. The results will be forwarded
to Statistics Interface. It will process and calculate relevant statistics
and present them to users.

To use NS-FLS, a user follows the workflow as in Figure 1. In
Step 1, the user runs an FLS algorithm and uses script to produce
both mobility and traffic traces, following the format requirements
of NS-FLS. We note that NS-FLS does not handle trace processing
itself, as different FLS algorithms might use different languages
and formats. For this paper, we wrote a script to convert traces
from a specific usage scenario (will be discussed in §4) to NS-FLS-
compatible format. In Step 2, the user specifies the network setting
that she wants to evaluate. NS-FLS offers an intuitive interface for
easily selecting the demanded configurations. In Step 3, NS-FLS
loads all three settings into ns-3 and executes the simulation. Finally,
NS-FLS collects feedback from ns-3 and provides statistics back to
the user over a graphical interface.

3 DETAILS OF THE SIMULATION PLATFORM

In this section, we introduce each component in NS-FLS in detail.

3.1 Mobility Controller

The Mobility Controller processes FLS mobility information, en-
abling simulation execution to update simulated node locations
over time. To be compatible with ns-3, we leverage its customizable
mobility model support by creating a trace-based mobility model
class. It extends ns-3’s mobility model with functions tailored for
FLS. Below, we outline key components of this mobility class.

Class Members The class includes two primary maps: m_trace,

which stores position data at various timestamps, and m_interpolatedTrace,

an interpolated version of m_trace for finer-grained movement
essential to accurate simulation.

loadTrace() This method loads location data into the ns-3 sim-
ulation from trace files, with each line formatted by timestamp

and x, y, and z coordinates. For example, a line in “1.txt” might

read “2.0 49.984 93.038 8.379,” which places FLS 1 at the speci-
fied coordinates at t =2 second. We read each line from the trace

file and store the information in m_trace, and then interpolate to

m_interpolatedTrace if necessary.

interpolate() When an input trace file has large intervals be-
tween timestamps, we use linear interpolation to create finer-grained
movements. NS-FLS allows adjusting the interpolation granularity.

updatePosition() This method uses ns-3’s simulator system and

updates the FLS’s position continuously withm_interpolatedTrace.

We use the current simulator’s time and an iterator in maps to ab-
stract the position and notify the ns-3 execution engine. Users can
visualize these updates via ns-3’s graphical interface (in 2D only,
with FLS positions projected on a 2D space).
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Figure 2: FLS’s 2D coordinates in different time.

3.2 Traffic Controller

This component records the traffic pattern from FLS algorithm,
including the timestamp, sender, receiver, and packet size. We de-
sign Traffic Controller so it is compatible with the mechanism of
network traffic simulation of the ns-3 platform.

NS-FLS maintains a vector called m_packetTraces to store each
FLS’s traffic information. Before the start of simulation, we first
load the trace file and push packet information of each FLS into

m_packetTraces. Each line is in the format of (timestamp, packet_size,

FLS_ID). Since ns-3 requires a unique IP address for each node,
NS-FLS maps each FLS ID into a unique IP address format (e.g., FLS
15 to IP 10.0.0.15).

After we load all traces from the input file and the simulation
is started, NS-FLS creates and maintains a local socket with ns-3.
This channel is used to notify the execution engine of the packets
that will be transmitted during the life cycle. Traffic Controller
goes through m_packetTraces and gets the size and destination
of the next packet the simulation needs to send. A message is
created accordingly to notify the Simulation Engine by triggering
sendPacket() function provided by ns-3.

3.3 Network Manager

This module allows users to select the network setting to test. On
a higher level, NS-FLS integrates multiple wireless technologies
for simulation. In our current version, NS-FLS supports wireless
standards such as Wi-Fi, BLE, and ZigBee, as shown in Table 1. We
select to support them as they are studied to be potential short-
range wireless technology suitable for FLS [6]. Other standards are
under development and will be supported in future.

On a lower level, NS-FLS allows users to change the configu-
rations for a wireless technology. Table 2 lists all configurations
that a user can select for the simulation if Wi-Fi is selected as the
technology. Such flexibility allows a user to derive the best configu-
ration to support an FLS application. We also make a user-friendly,
web-based interface as illustrated in Figure 3.

3.4 Simulation Engine

This subsection describes how we set up ns-3 for Simulation Engine.
In essence, we need to load the user-input setting information into
ns-3 and configure it correctly for simulation. We first create a
NodeContainer instance in ns-3 which contains a list of nodes as
FLSs. All our following operations work with NodeContainer as an



Table 1: Supported wireless technology for NS-FLS.

Technology
Wi-Fi
Bluetooth
Zigbee
Z-Wave
NFC

RFID

VLC
Infrared
Note: ': supported, 1: under development.

Support Status
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Figure 3: Dashboard for changing network configurations
and getting results.

abstraction. To support FLS movement, we use MobilityHelper to
install our Mobility Controller on each node, which allows them
to move according to the traces. After that, we load the network
settings that users want from the Network Manager. We use several
network configuration helpers to set up the network environment,
according to which wireless technology the user chooses, and then
use NetDeviceContainer to install these settings on each node. On
the application level, we set each node’s traffic separately with
Traffic Controller. Finally, the simulation is executed.
We now introduce some important helper functions.

NodeContainer This class is the fundamental management class
in ns-3, acting as a crucial container for handling network nodes
in simulation scenarios. It provides a systematic approach to orga-
nizing and managing collections of nodes, which represent Flying
Light Specks in our simulation environment.

MobilityHelper It is used to install our Mobility Controller on
each node in the NodeContainer. Through this setup, all nodes
can move according to our scheduled movement patterns during
the simulation. MobilityHelper helps us manage and control the
movement for all nodes at the same time.

Wireless Network Config Helpers NS-FLS acquires the set-
tings that users want through Network Manager, and then uses
different config helpers to set these settings in the simulation en-
gine. For instance, if Wi-Fi is selected as the technology, WifiHelper
manages the main Wi-Fi settings and handles network devices,
while other Helper classes set up information such as channel
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Node 34:

Transmitted Packets: 2359 Tx Packets: 41
Received Packets: 1107 Rx Packets: 41
Lost Packets: 1127 Lost Packets: ©
Packet Loss Rate: 47.7745% Packet Loss Ratio: 0%

Mean Delay: 5.57748 ms
Mean Jitter: 5.1638 ms

Throughput: 0.0674848 Mbps
Node 23:

Throughput: 0.00333257 Mbps
Mean Delay: 57.8482 ms
Mean Jitter: 62.5902ms

Transmitted Packets: 2219 Tx Packets: 39
Received Packets: 777 Rx Packets: 39
Lost Packets: 1240 Lost Packets: @
Packet Loss Rate: 55.881% Packet Loss Ratio: 0%

Mean Delay: 4.70379 ms
Mean Jitter: nan ms
Throughput: 0.0537369 Mbps

Throughput: 0.00290461 Mbps
Mean Delay: 2.73451 ms
Mean Jitter: 1.883ms

Figure 4: Result Statistics.

conditions (YansWifiChannelHelper), and physical settings (Yan-
sWifiPhyHelper).

NetDeviceContainer In ns-3, the net device represents both
the software driver and the simulated hardware. A net device is
installed in a Node so it can communicate with other Nodes through
Channels in the simulation. Similar to creating a NodeContainer
that manages nodes, we create a NetDeviceContainer for a set of
net devices and manage these different net devices. After setting
up the network environment, we use NetDeviceContainer to install
this setting on each node in NodeContainer.

3.5 Statistics Interface

NS-FLS retrieves results from ns-3 and presents the results in the
dashboard as shown in Figure 3. NS-FLS currently supports printing
seven metrics statistics: Transmitted Packets, Received Packets, Lost
Packets, Packet Loss Rate, Mean Delay, Mean Jitter, and Throughput.
We print these metrics for each FLS node and for each flow between
two nodes. Figure 4 shows an example of printed output for a round
of experiments.

4 PRELIMINARY EVALUATION RESULTS

To showcase how to use NS-FLS for networking for FLS research,
we replay a real FLS trace generated by Closest Available Neighbor
First (CANF) as described in [1]. This scenario includes 454 static
nodes, and each node continues to send broadcast messages. We
convert the traces kindly offered by the paper’s authors into com-
patible formats, and execute the simulation engine for 30 seconds.
We compare the performance of this application with two Wi-Fi
variants: Wi-Fi 802.11b and Wi-Fi 802.11ax. 802.11ax is a newer
version with higher throughput available.

Figure 5 shows the comparison between for node453. While
the performance on the sending side for this node stays the same
(33 packets and 18,108 bytes sent, 0.00536255 Mbps Send Rate),
the receiving performance shows clear differences. The number
of received packets increased by 1146.3% from 918 to 11,441. The
correctly delivered bytes increase by 1119.7%, from 430.9 KB to
5255.6 KB. The receiving throughput improves by 1084.6% from
0.13 Mbps to 1.54 Mbps. For all FLSs, we see similar improvements.
The number of total packets that are successfully received increases

Flow 538 (10.1.1.29 -> 10.1.1.35)

Flow 569 (10.1.1.15 -> 10.1.1.21)



Table 2: Configurable Parameters for Wi-Fi Network in NS-FLS.

Configuration Parameter

[ Description

[ Available Options

Basic Settings

Wi-Fi Standard

[ Selection of IEEE 802.11 standard

[ 802.11a/b/g/n/ac/ax

Channel Settings

| Channel bandwidth and frequency band configuration

[ 20/40/80/160 MHz; 2.4/5/6 GHz

Advanced Features

Transmission Power

Transmission power levels for the wireless interface

0-30 dBm

Power Save Mode

Set power save mode for FLS devices

On/Off

MIMO Configuration

Single-user or multi-user MIMO capabilities

SU-MIMO/MU-MIMO

Number of Antennas

Number of physical antennas on the device

1x1, 2x2, 4x4, 8x8

Spatial Streams Maximum supported Tx/Rx spatial streams 1-8 streams
Beamforming Beamforming capability configuration Enabled/Disabled
QoS Support Enable QoS supported for wireless network Enabled/Disabled
Error Model Model for simulating transmission errors YANS/NIST/Default

Frame Capture Model

Model for handling concurrent signal reception and interference

SimpleFrameCaptureModel

Rate Control Algorithm

Algorithm for adapting transmission rates

Aarf/Amrr/Arf/Cara/Onoe/Ideal/Minstrel

MAC Channel Access Mechanisms

Method used to access the wireless medium

DCF/EDCA

Mobility Model

Model for node movement patterns

Random Walk/Waypoint/Constant etc.

Simulation Parameters

Guard Interval

Time gap between transmitted symbols

0.4/0.8/1.6/3.2 us

Retransmission Limit

Maximum number of retransmission attempts

4-7 attempts

RTS/CTS Threshold

Size threshold for RTS/CTS packet

0-2347 bytes

Fragmentation Threshold

Maximum size of a packet that can be transmitted without fragmentation

256-2346 bytes

Contention Window Size

Min/Max contention window size setting

CWmin: 15, CWmax: 1023

Slot Time Duration of a slot in MAC protocol 9/20 ps

Beacon Interval Time between beacon frame transmissions 20-1000 ms/50ms by default
CCA Threshold Clear channel assessment sensitivity threshold -82 to -62 dBm

Energy Detection Threshold Minimum energy level for signal detection -100 to -60 dBm

Channel Switch Delay Time required for channel switching 1-100 ms

Antenna Gain Rx/Tx antenna gain values 0-30 dBi

MAC Queue Parameters

Queue delay limit and size configurations

Size: 100-1000 packets Delay:100-1000ms

Block Ack Window Size of block acknowledgment window 16-64 frames
Environmental Settings
Propagation Loss Model Model for signal propagation loss Friis/Log-distance/Nakagami

Interference Sources Configuration of interference effects

None/Adjacent/Co-channel

Noise Parameters

Background noise and thermal noise settings

-96 to -90 dBm

Building/Terrain Effects

Environmental obstacles and terrain effects

Indoor/Outdoor/Hybrid

by 1145.6% from 416,307 to 5,185,491, and the total received bytes
increase by 1119.0% from 195.4MB to 2.4GB.

These significant improvements are aligned with the technical
advances from 802.11b to 802.11ax. 802.11ax brings several key im-
provements: it uses a wider bandwidth with more efficient OFDMA
technology for data transmission, and supports advanced PHY tech-
nology such as MU-MIMO and interference management. These
features help reduce packet collisions and data loss in dense net-
works, such as our FLS scenario with 454 nodes.

5 FUTURE STEPS
We aim to improve NS-FLS in the following aspects.

Supporting More Network Technologies  As discussed in §3.3,
current NS-FLS supports three most popular short-range wireless
technologies, Wi-Fi, Bluetooth, and Zigbee. We aim to expand sup-
port to a broader range of technologies, as listed in Table 1, to
enable a comprehensive evaluation across diverse wireless options.

Programmable Interfaces While NS-FLS currently offers graph-
ical interfaces, researchers may benefit from programmatic control,
which allows them to enumerate configurations and compare re-
sults automatically. We plan to add interfaces to run simulations
programmatically, retrieve results, and generate custom outputs.

Estimating Power Consumption At present, NS-FLS tracks
performance metrics like delivery rate and throughput. However,

Node 453 statistics:

Sent:

Packets: 33

Bytes: 18108

Send Rate: 0.00536255 Mbps
Received:

Packets: 11441

Bytes: 5255622

Receive Rate: 1.53599 Mbps

Overall Statistics:
Total Sent: 55092 packets (25234453 bytes)
Total Received: 5185491 packets (2382258597 bytes)
Average Reception per Node: 11421.8 packets

(a) Wi-Fi Standard = 802.11ax
Node 453 statistics:

Sent:

Packets: 33

Bytes: 18108

Send Rate: 0.00536255 Mbps
Received:

Packets: 918

Bytes: 430852
Receive Rate: 0.126358 Mbps

Overall Statistics:
Total Sent: 55092 packets (25234453 bytes)
Total Received: 416307 packets (195430089 bytes)
Average Reception per Node: 916.976 packets

(b) Wi-Fi Standard = 802.11b
Figure 5: Test results using different Wi-Fi standards.
power consumption is crucial in FLS systems. We plan to inte-

grate energy consumption estimation during simulation to support
energy-aware analysis.



We will measure energy consumption in two main parts. The
first part covers FLS’s self-movement energy use during activities
like hovering in the sky, flying, and releasing light. The second
part looks at the energy used for communication, such as when
receiving or sending data packets. The ns-3 energy framework has
multiple modules available, and we will use two of them for our
work. For the first part, we will extend the DeviceEnergyModel and
adapt it for FLS. For the second part, we will use the Radio Energy

Model to simulate how much energy is used during communication.

Support Customized Algorithms Standard technologies may
not always meet specific application needs. Researchers may wish
to test novel network protocols optimized for certain FLS usage
scenario. In addition to standardized technologies, NS-FLS will
enable NS-FLS to support user-defined wireless technologies on
both PHY and MAC layers.

6 CONCLUSION

This paper introduces NS-FLS, a platform specifically designed for
network simulation in FLS applications. NS-FLS enables researchers

to evaluate the network requirements of an FLS application before
actual implementation. It encourages further exploration of FLS
networking, while in the meantime deriving new insights for de-
velopment of FLS algorithms that make efficient use of network.
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