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ABSTRACT
This paper presents the design and implementation of a circular

flight pattern for use by a 3D multimedia display, a Dronevision

(DV). A DV uses drones configured with light sources, Flying Light

Specks (FLSs), that are battery powered. The flight pattern enables

a swarm of FLSs to enter an opening, granting them access to the

charging coils to charge their batteries. We present two algorithms

for an FLS to travel from its current coordinate to rendezvous with

its assigned slot on the flight pattern, Shortest Distance (SD) and

Fastest Rendezvous Time (FRT). In addition to quantifying the trade-

off associated with these algorithms, we present an implementation

using a swarm of Crazyflie drones with Vicon localization.
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1 INTRODUCTION
A Dronevision (DV) is a non-immersive 3D multimedia display

detailed in [4]. A swarm of cooperatingminiature drones configured

with RGB light sources, Flying Light Specks (FLSs), to illuminate 3D

point clouds and provide haptic interactions [30]. Figure 1 shows a

DV illuminating a rose with a falling petal captured using a depth

camera. The ceiling of the DV consists of wireless charging coils

used to charge the battery of FLSs with a fixed flight time.

STAG [31] is an algorithm that continuously charges FLSs by

staggering their battery flight time. It minimizes the number of

charging stations. In addition, it minimizes the number of FLSs

that are in transit from an illumination to the charging coils. This

number may range from 55 to 218 FLSs with today’s batteries and

the Rose point cloud requiring 65K FLSs [31].

A challenge is how a swarm of tens of FLSs may fly through

an opening of the DV to access the charging coils. This is non-

trivial for several reasons. First, the system must consider down-

wash [8, 14, 26, 66, 87, 94], a region of instability caused by the flight

of one FLS that adversely impacts other FLSs entering this region,
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Figure 1: A Dronevision, DV [4].

e.g., loss of control or unpredictable behavior. Second, the flight

pattern may be at an arbitrary angle 𝜃 relative to the z-axis. Third,

FLSs should occupy a moving slot in the flight pattern while mini-

mizing either the traveled distance or the amount of time required

to occupy the slot for arbitrary 𝜃 angles. This paper presents the

design, simulation, and implementation of a circular flight pattern.

Figures 2a and 2b show a horizontal and a vertical orientation of

a circular flight pattern accessing an opening. With 2a (2b), the

opening at the top (back) provides FLSs with access to the charging

coils on top (back) of the Dronevision.

Definition 1.1. A flight pattern is a formation consisting of a

fixed number of slots where all slots maintain a general pattern or

shape with a fixed distance between two consecutive slots. This

is commonly termed a rigid formation [13, 81]. Slots travel at a

fixed speed and in the same direction. Once an FLS occupied slot is

below the opening, the occupying FLS flies through the opening

and relinquishes its slot.

This paper focuses on circular flight patterns with a fixed radius

R. The distance between the slots is dictated by downwash. For

example, with quadrotor representing an FLS, its downwash is rep-

resented as a sphere with a fixed radius 𝑟 [37, 50]. The sphere must

be inclusive of the drone. We set the distance between two consec-

utive slots to be 2r since two consecutive slots may be occupied by

an FLS. Slots move either clockwise or counter clockwise.

A centralized scheduler hosted on the Hub [31], see Figure 1,

of the DV may maintain the coordinates of the slots on the flight

pattern and assign a vacant slot to an FLS. This raises the following

research questions: First, what algorithms enable an FLS to compute

a path from its current coordinate to rendezvous with its assigned
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slot? Second, what are their tradeoff? This paper provides an answer

to these two questions.

We present two algorithms, Shortest Distance (SD) and Fastest

Rendezvous Time (FRT), for an FLS to rendezvous with its assigned

slot. As implied by their names, SD computes the shortest distance

while FRT computes the fastest time. We provide analytical models,

simulation studies, and an implementation of the circular flight

pattern. We use the simulation model to quantify the tradeoff asso-

ciated with SD and FRT. The implementation consists of a swarm

of 5 Crazyflie drones using the Vicon localization technique. Fig-

ures 3a and 3b show the opening of this implementation from a

corner and the bottom, respectively. It verifies the correctness of

the analytical models and the simulation model that embodies them.

Its output is almost identical to that of the simulation model, see

Figure 4 and video demonstration.

Contributions of this study include:

• Design and implementation of circular flight patterns at any

angle 𝜃 relative to the z-axis. It realizes horizontal (𝜃=0◦),
vertical (𝜃=90◦), and in-between 𝜃 values. (Section 2.)

• 𝜃 neutral algorithms to compute the Shortest Distance (SD)

and the Fastest Rendezvous Time (FRT) for an FLS to ren-

dezvous with its assigned slot. (Section 2).

• Analytical models, a simulation study, and an implementa-

tion of the flight pattern and the SD and FRT algorithms.

The implementation uses a swarm of Crazyflie drones with

the Vicon localization system. Click demonstration for a

video.

• An evaluation of SD and FRT, highlighting their tradeoffs.

(Section 4).

• We open source our software implementation and its data

set at https://github.com/flyinglightspeck/CircularFlightPattern.

The rest of this paper is organized as follows. Section 2 details

the design of a circular flight pattern, and SD and FRT algorithms.

Section 3 presents an implementation using Crazyflie drones. Sec-

tion 4 evaluates SD and FRT, quantifying their tradeoffs. Section 5

presents related work. Brief conclusions are presented in Section 6.

2 A CIRCULAR FLIGHT PATTERN SLANTED 𝜃

DEGREES
A single layer circular flight pattern locates on a plane. It has a

fixed center 𝑃𝐶 , a radius 𝑅, and 𝑁 slots. The slots are rotating either

clockwise or counter-clockwise at the linear speed 𝑆𝑠𝑙𝑜𝑡 . A normal

vector

−−−−−→
𝑉𝑁𝑜𝑟𝑚 defines the angle 𝜃 between the flight pattern and

the z-axis, see Figure 5. The normal vector may be perpendicular to

the ground (𝜃=0, horizontal, see Figure 2a), parallel to the ground

(𝜃=90, vertical, see Figure 2b), or slanted at 𝜃 degrees relative to the

z-axis. See Figure 5.

To accommodate downwash, the distance between two consecu-

tive slots𝑑𝑠 is required to be greater than or equal to twice the radius

𝑟 of the sphere that models a drone and its downwash, 𝑑𝑠 ≥ 2𝑟 . The

maximum number of slots is 𝑁 = 2𝜋𝑅
2𝑟 , 𝑑𝑠 = 2𝑟 . The numerator is

the circumference of the flight pattern. The denominator 2𝑟 is the

minimum allowed distance between two slots. Obviously, a flight

pattern may consist of fewer slots 𝑛, 𝑛 < 𝑁 . In this case the distance

between slots may be larger than the required minimum, 𝑑𝑠 =
2𝜋𝑅
𝑛 ,

𝑑𝑠 ≥ 2𝑟 .

(a) A horizontal flight pattern,
𝜃 = 0.

(b) A vertical flight pattern,
𝜃 = 90.

Figure 2: Dronevision with a circular Flight Pattern: the hori-
zontal (𝜃=0◦) and vertical (𝜃=90◦) alignment makes the charg-
ing coils accessible to FLSs.

(a) Corner view of the opening.

(b) Bottom view of the opening.

Figure 3: the opening of an implementation with a swarm of
Crazyflie drones

Figure 4: Visualization of simulation.
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Figure 5: An FLS relative to a flight pattern.

The slots on the flight pattern are assigned to FLSs. An FLS travels

from its current coordinate 𝑃𝑓 to rendezvous with its assigned slot.

It matches the speed of the slot (flight pattern) to occupy it. Meeting

these requirements is non-trivial because both the slot and the FLS

are moving. A design requires an answer to the following: What is

the coordinate of an assigned slot once the FLS arrives at the flight

pattern? What is the shortest distance for the FLS to rendezvous

with its slot? What is the fastest time for the FLS to rendezvous

with it slot? An answer to these questions is a tradeoff between

distance and time. The following sections quantify this tradeoff.

Section 2.1 provides an algorithm that computes the location of

a slot after some time interval for any value of 𝜃 . Subsequently,

Sections 2.2.2 and 2.2.3 present SD and FRT algorithms that trade

distance for time. These algorithms depend on a velocity model.

One is presented in Section 2.2.4.

2.1 Slot Coordinate as a Function of Time
The slots of a flight pattern are logical. Each is identified by a unique

id. At its initialization time, the scheduler determines the radius

𝑅 of the flight pattern, the number of slots 𝑁 , the coordinates of

each slots and assigns them a unique id, and the speed of the slots.

Algorithm 1 computes the coordinates of the Slot sID after 𝑡 time

units. It assumes each slot of the flight pattern is indexed from 1 to

Algorithm 1: GetSlotPosition(𝐹𝑃, 𝑠𝐼𝐷, 𝑡 )

1 [𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 ] ← 𝐹𝑃 .𝑉𝑁𝑜𝑟𝑚
∥𝐹𝑃 .𝑉𝑁𝑜𝑟𝑚 ∥

2 𝜙 ← 𝐹𝑃 .𝑆𝑠𝑙𝑜𝑡
𝐹𝑃 .𝑅

× 𝑡
3 𝑎 ← cos(𝜙 )
4 𝑏 ← sin(𝜙 )
5 𝑐 ← 1 − cos(𝜙 )
6 𝑀𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ←

𝑎 + 𝑥2

𝑁
𝑐 𝑥𝑁 𝑦𝑁 𝑐 − 𝑧𝑁𝑏 𝑥𝑁 𝑧𝑁 𝑐 + 𝑦𝑁𝑏

𝑦𝑁 𝑥𝑁 𝑐 + 𝑧𝑁𝑏 𝑎 + 𝑦2
𝑁
𝑐 𝑦𝑁 𝑧𝑁 𝑐 − 𝑥𝑁𝑏

𝑧𝑁 𝑥𝑁 𝑐 − 𝑦𝑁𝑏 𝑧𝑁 𝑦𝑁 𝑐 + 𝑥𝑁𝑏 𝑎 + 𝑧2
𝑁
𝑐


7 𝑃𝑠𝑙𝑜𝑡 ← 𝐹𝑃 .𝑠𝑙𝑜𝑡𝑠 [𝑠𝐼𝐷 ]
8
−→
𝑉𝑅 ← 𝑀𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛

−−−−−−−−→
𝐹𝑃 .𝑃𝐶𝑃𝑠𝑙𝑜𝑡

T

9 return 𝑃𝐶 +
−→
𝑉𝑅

𝑁 , 1 ≤ 𝑠𝐼𝐷 ≤ 𝑁 . Its input is a Flight Pattern object FP, the identity

of a slot sID, and 𝑡 time units from now. The object FP has a value

for the following variables:

−−−−−→
𝑉𝑁𝑜𝑟𝑚 that defines the angle 𝜃 , radius

𝑅, speed 𝑆𝑠𝑙𝑜𝑡 . The output of Algorithm 1 is the coordinate of the

slot sID after 𝑡 time units. The first step of this algorithm computes

a unit vector by dividing

−−−−−→
𝑉𝑁𝑜𝑟𝑚 with its length. Step 2 computes

the rotation angle 𝜙 of a slot after 𝑡 time units. Steps 3-6 calculate

the rotation matrix for the slot. Step 7 identifies the current location

of slot sID. Step 8 applies the rotation matrix to the vector from the

slot to the center of the flight pattern. The resulting vector

−→
𝑉𝑅 is

from the center of the flight pattern to the location of the slot after

𝑡 time units. Step 9 converts the vector

−→
𝑉𝑅 to a 3D coordinate of the

Slot sID.

2.2 FLS Rendezvous with a Slot: SD and FRT
An FLS 𝑓 in a Dronevison must rendezvous with its assigned slot,

i.e., arrive at the same coordinates and at the same time as its slot.

The Dronevision display space is well defined with no obstacles. It

is for use in an indoor setting with no environmental factors such

as wind. Here, we focus on a single layer circular flight pattern,

consisting of a fixed number of slots 𝑁 that are rotating counter-

clockwise at a fixed speed. An FLS is provided with a slot, the

current coordinates of the slot, and the speed at which the slot

is moving. We present two rendezvous algorithms for use by the

FLSs. The first, Shortest Distance (SD), computes the path with

the shortest travel distance. The second, Fastest Rendezvous Time

(FRT), computes the path with the fastest travel time. Both assume

the current location of an FLS, 𝑃𝑓 , is a known coordinate. SD uses

analytical models with the point on the flight pattern closest to 𝑃𝑓 .

FRT uses dynamic programming by searching the range between

the closest and the farthest point on the flight pattern to 𝑃𝑓 . Both

techniques assume (a) the velocity model of Section 2.2.4 and (b)

an FLS is able to travel at either the same speed or a faster speed

than the speed of a slot, 𝑆𝑚𝑎𝑥 ≥ 𝑆𝑠𝑙𝑜𝑡 .

The next section describes how to compute the closest and far-

thest rendezvous point to the coordinate 𝑃𝑓 of an FLS. These are

denoted as 𝑃𝑐𝑙𝑜𝑠𝑒 and 𝑃𝑓 𝑎𝑟 , respectively. While SD of Section 2.2.2

uses 𝑃𝑐𝑙𝑜𝑠𝑒 , FRT of Section 2.2.3 uses both 𝑃𝑐𝑙𝑜𝑠𝑒 and 𝑃𝑓 𝑎𝑟 .
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2.2.1 Closest & Farthest Point. Flight patterns may have different

orientation in the global coordinate system. A general counter-

clockwise rotating flight pattern, 𝐹𝑃 , lies on a plane Π. The included
angle between Π and the positive direction of the z-axis (vector

[0, 0, 1]) of the global coordinate system is 𝜃 degree. Let the nor-

mal vector of the flight pattern be

−−−−−→
𝑉𝑁𝑜𝑟𝑚 = [𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁 ], where

|−−−−−→𝑉𝑁𝑜𝑟𝑚 | = 1. Similar to previous, let 𝑃𝑓 = [𝑥 𝑓 , 𝑦𝑓 , 𝑧𝑓 ], and 𝑃𝐶 =

[𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ]. See Figure 5. Then,
−−−−→
𝑃𝑓 𝑃𝐶 = [𝑥𝐶 − 𝑥 𝑓 , 𝑦𝐶 −𝑦𝑓 , 𝑧𝐶 − 𝑧𝑓 ].

The distance from 𝑃𝑓 to Π can be described as the length of the

vector

−→
𝑉𝐻 , where

−→
𝑉𝐻 start from 𝑃𝑓 and end at a point on Π, and

−→
𝑉𝐻 is perpendicular to Π, meaning

−→
𝑉𝐻 ∥

−−−−−→
𝑉𝑁𝑜𝑟𝑚 . Hence, 𝑉𝐻 =

|−−−−→𝑃𝑓 𝑃𝐶 | × cos(𝛽) ×
−−−−−→
𝑉𝑁𝑜𝑟𝑚 , where cosine value of the included angle

between

−−−−→
𝑃𝑓 𝑃𝐶 and

−−−−−→
𝑉𝑁𝑜𝑟𝑚 , cos(𝛽) =

−−−→
𝑃𝑓 𝑃𝐶 ·

−−−−→
𝑉𝑁𝑜𝑟𝑚

|−−−→𝑃𝑓 𝑃𝐶 |× |
−−−−→
𝑉𝑁𝑜𝑟𝑚 |

. The projec-

tion of vector

−−−−→
𝑃𝑓 𝑃𝐶 on the plane Π:

−−−−→
𝑉𝑝𝑟𝑜 𝑗 =

−−−−→
𝑃𝑓 𝑃𝐶 −

−→
𝑉𝐻 , and the

closest point position 𝑃𝑐𝑙𝑜𝑠𝑒 = 𝑃𝐶 − 𝑅 ×
−−−→
𝑉𝑝𝑟𝑜 𝑗

|−−−→𝑉𝑝𝑟𝑜 𝑗 |
, the farthest point

position 𝑃𝑓 𝑎𝑟 = 𝑃𝐶 + 𝑅 ×
−−−→
𝑉𝑝𝑟𝑜 𝑗

|−−−→𝑉𝑝𝑟𝑜 𝑗 |
The simple horizontal and vertical flight patters of Figures 2a

and 2b are a special case with 𝜃 set to 0
◦
and 90

◦
, respectively.

2.2.2 Shortest Distance (SD) Path. This technique minimizes the

distance 𝑑 traveled by an FLS to its assigned slot. It computes a

straight line with a starting point set to the FLS’s coordinates, an

end point set to the closest point 𝑃𝑐𝑙𝑜𝑠𝑒 on the flight pattern, some

wait time 𝛿 at the starting point, and the FLS flight duration. The

duration is dictated by the FLS velocity model to travel 𝑑 with the

time required to decelerate to match the speed of a slot in the flight

pattern.

When 𝑑 is such that an FLS may reach its maximum speed, we

consider 3 variants of SD. Their key difference is the duration of

wait time 𝛿 and the speed used to travel. All variants consider the

time to either accelerate or decelerate to match the speed of a slot

in a flight pattern.

Variant 1 requires an FLS to travel at its fastest speed 𝑆𝑚𝑎𝑥

by adjusting the duration of 𝛿 . When compared with the other

alternatives, it maximizes the wait time 𝛿𝑚𝑎𝑥 . Its highest speed

must be as fast as the speed of the slots (𝑆𝑠𝑙𝑜𝑡 ) in the flight pattern

or faster, 𝑆𝑚𝑎𝑥 ≥ 𝑆𝑠𝑙𝑜𝑡 . When 𝑆𝑚𝑎𝑥 > 𝑆𝑠𝑙𝑜𝑡 , Variant 1 considers

the time to decelerate to match the speed of its assigned slot 𝑆𝑠𝑙𝑜𝑡 .

Variant 2 requires an FLS to leave its current coordinates as

soon as possible. This means it may travel at its slowest speed

𝑆𝑠𝑙𝑜𝑤 > 0 to rendezvous with its slot by adjusting the duration of

𝛿 . It minimizes the wait time 𝛿𝑚𝑖𝑛 when compared with the other

variants. If 𝑆𝑠𝑙𝑜𝑤 is faster or slower than 𝑆𝑠𝑙𝑜𝑡 , Variant 2 considers

the time to decelerate or accelerate to match the speed of its slot.

Variant 3 is a hybrid that uses a speed in between the minimum

𝑆𝑠𝑙𝑜𝑤 and the maximum 𝑆𝑚𝑎𝑥 speed. It is motivated by the observa-

tion that the flight time of an FLS on its remaining battery lifetime

may be maximized if it travels at a pre-specified speed 𝑆𝐵𝑎𝑡𝑡𝑒𝑟𝑦 .

Assuming this speed is somewhere between the minimum and max-

imum speed (𝑆𝑠𝑙𝑜𝑤 ≤ 𝑆𝐵𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 𝑆𝑚𝑎𝑥 ) then, this technique’s wait

time 𝛿ℎ𝑦𝑏𝑟𝑖𝑑 is somewhere between the minimum and maximum

wait times, 𝛿𝑚𝑖𝑛 ≤ 𝛿ℎ𝑦𝑏𝑟𝑖𝑑 ≤ 𝛿𝑚𝑎𝑥 . Note that Variant 3 is the same

as Variants 1 and 2 when 𝑆𝐵𝑎𝑡 equals 𝑆𝑚𝑎𝑥 and 𝑆𝑠𝑙𝑜𝑤 , respectively.

Algorithm 2 implements SD by calculating the position and time

for an FLS 𝑓 to rendezvous with its assigned slot and its wait time

at its starting coordinate denoted 𝛿 . The three variants can be im-

plemented by using different velocity models for an FLS. These

velocity models are presented in Section 2.2.4. Based on the coordi-

nate of the closest point to 𝑓 on the flight pattern, this algorithm

computes the time for 𝑓 to arrive at this position and the time for

its assigned slot to arrive at the same coordinate. Algorithm 2 is a

sequence of analytical expressions with𝑂 (1) complexity. It outputs

the rendezvous time, and the amount of time 𝛿 that the FLS must

wait.

Algorithm 2: SD(𝐹𝑃, 𝑓 , 𝑃𝑐𝑙𝑜𝑠𝑒 )
1 𝑃𝑠𝑙𝑜𝑡 ← 𝐹𝑃 .𝑠𝑙𝑜𝑡𝑠 [ 𝑓 .𝑠𝐼𝐷 ]

2
−−−−−−→
𝑉(𝑠𝑙𝑜𝑡,𝐶 ) =

−−−−−−−−−−→
𝑃𝑠𝑙𝑜𝑡 𝐹𝑃 .𝑃𝐶

|−−−−−−−−−−→𝑃𝑠𝑙𝑜𝑡 𝐹𝑃 .𝑃𝐶 |

3
−−−−−−−→
𝑉(𝑐𝑙𝑜𝑠𝑒,𝐶 ) =

−−−−−−−−−−−→
𝑃𝑐𝑙𝑜𝑠𝑒𝐹𝑃 .𝑃𝐶

|−−−−−−−−−−−→𝑃𝑐𝑙𝑜𝑠𝑒𝐹𝑃 .𝑃𝐶 |

4 𝑎𝑛𝑔𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = arccos(−−−−−−→𝑉(𝑠𝑙𝑜𝑡,𝐶 ) ·
−−−−−−−→
𝑉(𝑐𝑙𝑜𝑠𝑒,𝐶 ) )

5 if (−−−−−−→𝑉(𝑠𝑙𝑜𝑡,𝐶 ) ×
−−−−−−−→
𝑉(𝑐𝑙𝑜𝑠𝑒,𝐶 ) ) · 𝐹𝑃 .

−−−−−→
𝑉𝑁𝑜𝑟𝑚 < 0 then

6 𝑎𝑛𝑔𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 2𝜋 − 𝑎𝑛𝑔𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
7 end
8 𝑡𝑠𝑙𝑜𝑡 = 𝑎𝑛𝑔𝑙𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ÷ 𝐹𝑃 .𝑆𝑠𝑙𝑜𝑡

𝐹𝑃 .𝑅

9 𝑡𝑓 = Min-TimeVelocityModel( |−−−−−−−−→𝑓 .𝑃𝑓 𝑃𝑐𝑙𝑜𝑠𝑒 | )
10 if 𝑡𝑠𝑙𝑜𝑡 < 𝑡𝑓 then
11 𝑡𝑟𝑜𝑢𝑛𝑑 ← 2𝜋×𝐹𝑃 .𝑅

𝐹𝑃 .𝑆𝑠𝑙𝑜𝑡

12 𝑡𝑠𝑙𝑜𝑡 ← 𝑡𝑠𝑙𝑜𝑡 +
⌈
𝑡𝑓 −𝑡𝑠𝑙𝑜𝑡
𝑡𝑟𝑜𝑢𝑛𝑑

⌉
× 𝑡𝑟𝑜𝑢𝑛𝑑

13 end
14 if Variant 1 then
15 𝛿 = 𝑡𝑠𝑙𝑜𝑡 − 𝑡𝑓
16 end
17 else if Variant 2 then
18 𝛿 = Fix-TimeVelocityModel( |−−−−−−−−→𝑓 .𝑃𝑓 𝑃𝑐𝑙𝑜𝑠𝑒 |, 𝑡𝑠𝑙𝑜𝑡 )
19 end
20 else if Variant 3 then
21 𝛿ℎ𝑦𝑏𝑟𝑖𝑑 ← The specified waiting time for Variant 3

22 𝛿 = 𝛿ℎ𝑦𝑏𝑟𝑖𝑑

23 end
24 return [𝑡𝑠𝑙𝑜𝑡 , 𝛿 ]

2.2.3 Fastest Rendezvous Time (FRT) Path. Algorithm 3 computes

the pathwith the Fastest Travel Time (FRT) for an FLS to rendezvous

with its assigned slot. The algorithm computes both the rendezvous

time and its coordinate on the flight pattern by using the closest

𝑃𝑐𝑙𝑜𝑠𝑒 and farthest 𝑃𝑓 𝑎𝑟 points on the flight pattern as a guide. Since

the distance traveled by the FLS will not be longer than the distance

from 𝑃𝑓 to 𝑃𝑓 𝑎𝑟 , and will not be shorter than the distance from 𝑃𝑓
to 𝑃𝑐𝑙𝑜𝑠𝑒 , then the upper and lower bound can be calculated with

the velocity model of the FLS using the fastest speed 𝑆𝑚𝑎𝑥 . This

defines an interval of time [𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥 ]. We break this interval

into 𝜇 slices, each with 𝜖 duration, 𝜇 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝜖 . FRT uses binary

search to determine when the assigned slot will rendezvous with

the FLS in a time slice. It uses this slice as input to Algorithm 1 to
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determine a point on the flight path. This is the coordinates of the

rendezvous location. The complexity of the algorithm is O(log 𝜇).

Algorithm 3: FRT(𝐹𝑃, 𝑓 , 𝑃𝑐𝑙𝑜𝑠𝑒 , 𝑃𝑓 𝑎𝑟 , 𝜖)

1 𝑙𝑜 ← VelocityModel( |−−−−−−−−→𝑓 .𝑃𝑓 𝑃𝑐𝑙𝑜𝑠𝑒 | )
2 ℎ𝑖 ← VelocityModel( |−−−−−−−→𝑓 .𝑃𝑓 𝑃𝑓 𝑎𝑟 | )
3 while 𝑙𝑜 ≤ ℎ𝑖 + 𝜖 do
4 𝑚𝑖𝑑 ← (lo + hi) ÷ 2
5 𝑃𝑠𝑙𝑜𝑡 ← GetSlotPosition(𝐹𝑃, 𝑓 .𝑠𝐼𝐷,𝑚𝑖𝑑 )
6 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 ← VelocityModel( |−−−−−−−→𝑓 .𝑃𝑓 𝑃𝑠𝑙𝑜𝑡 | )
7 𝑡𝑑𝑖𝑓 𝑓 ← 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 −𝑚𝑖𝑑

8 if 𝑡𝑑𝑖𝑓 𝑓 > 0 then
9 𝑙𝑜 ←𝑚𝑖𝑑 + 𝜖

10 end
11 else
12 ℎ𝑖 ←𝑚𝑖𝑑

13 end
14 end
15 return[GetSlotPosition(𝐹𝑃, 𝑓 .𝑆𝐼𝐷, 𝑙𝑜 ), 𝑙𝑜 ]

Algorithm 3 shows the pseudo-code for FRT. Its input includes

a flight pattern object FP, an FLS 𝑓 , the closest 𝑃𝑐𝑙𝑜𝑠𝑒 and farthest

𝑃𝑓 𝑎𝑟 points on the flight pattern, and 𝜖 which is the duration of a

time slice. Its output is the coordinate of the rendezvous point and

its time. Steps 1 and 2 use the velocity model of Section 2.2.4 to

compute the time to travel to 𝑃𝑐𝑙𝑜𝑠𝑒 and 𝑃𝑓 𝑎𝑟 , respectively. Steps 3

to 14 implement the binary search technique to compute the FLS

rendezvous time with its assigned time slot. The complexity of

Algorithm 3 is O(ln 𝜇).

2.2.4 Velocity Model.

Assumption: An FLS has amaximum acceleration 𝑎↑, a maximum

deceleration 𝑎↓, and a maximum
1
speed 𝑆𝑚𝑎𝑥 . At any time, the FLS

may not travel faster than 𝑆𝑚𝑎𝑥 , and the rate of which the FLS’s

speed changes cannot exceed 𝑎↑ when accelerating or 𝑎↓ when
decelerating. Note that all 𝑆𝑚𝑎𝑥 , 𝑎

↑
and 𝑎↓ are scalar values larger

than 0, independent of the heading of an FLS.

Min-Time Velocity Model: SD (Variant 1) and FRT use the Min-

Time Velocity Model. The velocity model describes the acceleration,

deceleration, and a maximum speed 𝑆𝑚𝑎𝑥 that an FLS may use

to travel distance 𝑑 . This is the distance from the FLS’s current

coordinate 𝑃𝑓 to the coordinates of its assigned slot 𝑃𝑠 , 𝑑 = |𝑃𝑓 𝑃𝑠 |.
We assume the starting velocity of the FLS is zero and the maximum

FLS speed is higher than the speed of a slot, 𝑆𝑚𝑎𝑥 ≥ 𝑆𝑠𝑙𝑜𝑡 . Factors

such as gravity may cause 𝑎↑ to not equal 𝑎↓.

Problem 1. Minimize the time to travel distance 𝑑 from 𝑃𝑓 to 𝑃𝑠
without exceeding the maximum speed 𝑆𝑚𝑎𝑥 , or exceeding either the
maximum acceleration 𝑎↑ or maximum deceleration 𝑎↓.

Three scenarios constitute the solution to this problem:

1
The speed of a stationary FLS is zero. The minimum speed that an FLS may travel is

𝑆𝑠𝑙𝑜𝑤 . It is dictated by Variant 2 of SD. The velocity model tries to realize 𝑆𝑠𝑙𝑜𝑤 .

(1) 𝑑 requires the FLS to accelerate at rate 𝑎↑ to reach 𝑆𝑚𝑎𝑥 ,

travel at speed 𝑆𝑚𝑎𝑥 until a well defined point, and decel-

erate at rate 𝑎↓ to match the speed of its assigned slot at

𝑃𝑠 .

(2) 𝑑 requires the FLS to accelerate at rate 𝑎↑ to reach 𝑆𝑚𝑎𝑥 .

However, the FLS must decelerate immediately at the rate

𝑎↓ to match the speed of its assigned slot at 𝑃𝑠 .

(3) 𝑑 requires the FLS to accelerate to arrive at a well defined

point. Prior to reaching 𝑆𝑚𝑎𝑥 , the FLS must decelerate to

𝑆𝑠𝑙𝑜𝑡 , the speed of its assigned slot at 𝑃𝑠 .

(4) 𝑑 is too small, i.e., the FLS is too close to the slot, preventing

the FLS from accelerating to match the speed of its slot at

𝑃𝑠 .

An FLS detects the different scenarios using distance 𝑑 to its des-

tination, distance Δ𝑎 (Δ𝑝 ) required to accelerate to 𝑆𝑚𝑎𝑥 (𝑆𝑠𝑙𝑜𝑡 ),

and distance Δ𝑑 required to decelerate to match 𝑆𝑠𝑙𝑜𝑡 from 𝑆𝑚𝑎𝑥 .

The FLS is in Scenario 1 when Δ𝑎+Δ𝑑 is less than 𝑑 , Scenario 2

when Δ𝑎 + Δ𝑑 equals 𝑑 , Scenario 3 when Δ𝑎 + Δ𝑑 is greater than 𝑑 ,

Scenario 4 when Δ𝑝 is greater than 𝑑 . Note that the ideal scenario

(not listed) is when Δ𝑝 equals to 𝑑 as it enables an FLS to accelerate

from rest to occupy its slot at speed 𝑆𝑠𝑙𝑜𝑡 .

Below, we describe how an FLS computes Δ𝑎 and Δ𝑑 . Subse-
quently, we detail each scenario in turn.

Detection of alternative scenarios: The velocity of an FLS at time𝑇 +𝑡
is a function of its speed at time 𝑇 and acceleration or deceleration

the afterwards 𝑡 :𝑉𝑖+1 = 𝑉𝑖 +𝑎𝛿 . Where 𝛿 is the duration of the step.

𝑉𝑖 is a value between 0 and 𝑆𝑚𝑎𝑥 , 𝑉𝑖 ∈ [0, 𝑆𝑚𝑎𝑥 ]. The distance an
FLS travels while accelerating or decelerating in time 𝑡 is:

Δ = 𝑉𝑖𝑡 +
1

2

𝑎(𝑡)2 (1)

Where𝑉𝑖 is the starting speed and 𝑎 is set to either 𝑎
↑
or -𝑎↓ depend-

ing on whether the FLS is accelerating or decelerating, respectively.

Consider the scenario when an FLS accelerates from a starting

velocity of zero to reach the maximum speed. The amount of time

required to reach the maximum speed 𝑆𝑚𝑎𝑥 is
𝑆𝑚𝑎𝑥

𝑎↑
. During this

time, the FLS travels distance Δ𝑎 to reach 𝑆𝑚𝑎𝑥 , Δ𝑎=
1

2
𝑎↑𝑡2. When

decelerating from the maximum speed with the objective to match

𝑆𝑠𝑙𝑜𝑡 then 𝑉𝑖 is 𝑆𝑚𝑎𝑥 and the required time is 𝑡 =
𝑆𝑚𝑎𝑥−𝑆𝑠𝑙𝑜𝑡

𝑎↓
. The

traveled distance Δ𝑑=𝑆𝑚𝑎𝑥 𝑡 − 1

2
𝑎↓ ( 𝑆𝑚𝑎𝑥−𝑆𝑠𝑙𝑜𝑡

𝑎↓
)2, see Equation 1.

Alternative scenarios: In Scenario 1, the FLS cruises at speed 𝑆𝑚𝑎𝑥

for a distance equivalent to Δ𝑐=d-(Δ𝑎 + Δ𝑑 ). Its duration is
Δ𝑐

𝑆𝑚𝑎𝑥
.

In Scenario 2, once the FLS speed is 𝑆𝑚𝑎𝑥 , it starts to decelerate

at the rate 𝑎↓ to arrive at its slot with speed 𝑆𝑠𝑙𝑜𝑡 . With Scenario

3, the FLS uses the following equation to compute the amount of

time to arrive at its slot:

√︂
2𝑎↑ 𝑎↓

𝑎↑+𝑎↓
𝑑

𝑎↑
+

√︂
2𝑎↑ 𝑎↓

𝑎↑+𝑎↓
𝑑

𝑎↓
. With the last

scenario, the FLS must move Δ𝑝 − 𝑑 away from its slot. Now, it is

in the ideal scenario to accelerate to match 𝑆𝑠𝑙𝑜𝑡 .

Example 1.
Consider a horizontal flight pattern, FP.𝜃=0, rotating at a speed

of 0.7 m/second, FP.𝑆𝑠𝑙𝑜𝑡=0.7 m/second. The radius of this circular

flight pattern is 1 meter, FP.𝑅=1 m, and the coordinate of its cen-

ter is [0,0,0.8]. An FLS with a starting coordinate [1, 1, 0] must

rendezvous with its assigned slot. The maximum FLS speed is
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𝑆𝑚𝑎𝑥=1.5 m/second. Its maximum acceleration and deceleration are

1 m/second
2
. Hence,𝑇𝑚𝑖𝑛 = 0.901 seconds and𝑇𝑚𝑎𝑥= 2.543 seconds.

Assume the duration of a time slice is
1

30
seconds, 𝜖=0.033 seconds.

The number of time slots is 36, 𝜇=36. Hence, FRT of Algorithm 3

requires ⌈log
2
36⌉ = 6 iterations. It computes a straight line path

for the FLS to rendezvous with its assigned slot 0.83 seconds from

the current time and travel 0.963 m with the fastest speed.

With the same settings, SD of Algorithm 2 (adjusted for Variant

2) requires a flight time of 2.574 seconds. This is more than 3x longer

than FRT. However, its traveled distance (0.9 m) is 7% shorter than

FRT. One reason for SD’s long flight time is its wait time 𝛿 = 7.526

second to rendezvous with its slot.

Fix-Time Velocity Model: Variants 2 and 3 use the Fix-Time Veloc-

ity Model. This velocity model describes how an FLS may achieve

rendezvous speed 𝑆𝑠𝑙𝑜𝑡 after traveling distance 𝑑 during time 𝑇 .

The value of 𝑇 is determined by the time to rendezvous with 𝑡𝑠𝑙𝑜𝑡
(see Algorithm 2) and the waiting time 𝛿 , 𝑇 = 𝑡𝑠𝑙𝑜𝑡 − 𝛿 . Similar to

the Min-Time Velocity Model, d=|𝑃𝑓 𝑃𝑠 |, and we assume the FLS

starts from the velocity zero and 𝑆𝑚𝑎𝑥 > 𝑆𝑠𝑙𝑜𝑡 .

Problem 2. Travel distance 𝑑 from 𝑃𝑓 to 𝑃𝑠 in a fixed time 𝑇
without exceeding the maximum speed 𝑆𝑚𝑎𝑥 , or exceeding either the
maximum acceleration 𝑎↑ or maximum deceleration 𝑎↓.

Four scenarios constitute the solution to this problem:

(1) 𝑑 requires the FLS to continuously accelerate for a duration

𝑇 to reach 𝑆𝑠𝑙𝑜𝑡 , so to match the speed of its assigned slot

𝑃𝑠 .

(2) 𝑑 requires the FLS to accelerate to reach 𝑆𝑠𝑙𝑜𝑡 , then travel

at speed 𝑆𝑠𝑙𝑜𝑡 until it rendezvous with its slot at 𝑃𝑠 .

(3) 𝑑 requires the FLS to accelerate to reach 𝑆 ′𝑚𝑎𝑥 , travel at

speed 𝑆 ′𝑚𝑎𝑥 until a well defined point, and decelerate to

match the speed of its assigned slot at 𝑃𝑠 . Note that 𝑆𝑠𝑙𝑜𝑡 <

𝑆 ′𝑚𝑎𝑥 < 𝑆𝑚𝑎𝑥 .

(4) 𝑑 is too small, i.e., the FLS is too close to the slot, preventing

the FLS from accelerating to match the speed of its slot at

𝑃𝑠 .

The acceleration and deceleration of an FLS may not be fixed

constant. Multiple optimization approaches can be adapted to cal-

culate a smooth change in acceleration (deceleration) [41, 60]. Here,

we describe the simplest version using a constant acceleration and

deceleration. An FLS detects different scenarios using distance 𝑑 to

its destination, speed of its assigned slot 𝑆𝑠𝑙𝑜𝑡 and travel time 𝑇 .

Detection of alternative scenarios: If
𝑆2
𝑠𝑙𝑜𝑡

2𝑎↑
is greater than 𝑑 , the FLS

is in Scenario 4. Otherwise, the FLS is in Scenario 1 when
𝑇𝑆𝑠𝑙𝑜𝑡

2
is

greater than or equal to 𝑑 , Scenario 2 when
𝑇𝑆𝑠𝑙𝑜𝑡

2
is smaller than 𝑑

and

𝑆2
𝑠𝑙𝑜𝑡

2𝑎↑
+ (𝑇 − 𝑆𝑠𝑙𝑜𝑡

𝑎↑
)𝑆𝑠𝑙𝑜𝑡 is greater than or equal to 𝑑 , Scenario 3

when

𝑆2
𝑠𝑙𝑜𝑡

2𝑎↑
+ (𝑇 − 𝑆𝑠𝑙𝑜𝑡

𝑎↑
)𝑆𝑠𝑙𝑜𝑡 is smaller than 𝑑 . Note that there is one

special case in Scenario 3, where 𝑆 ′𝑚𝑎𝑥 = 𝑆𝑚𝑎𝑥 , the acceleration is

𝑎↑, and the deceleration is 𝑎↓. In this case, Fix-Time Velocity Model

generates the same moving pattern as the Min-Time Velocity Model.

This may happen when 𝛿𝑚𝑖𝑛 and 𝛿ℎ𝑦𝑏𝑟𝑖𝑑 in Variant 2 and 3 of SD

and 𝛿𝑚𝑎𝑥 of Variant 1 of SD are all limited to 0 by 𝑑 and 𝑇

Below, we fill in the detailed acceleration and deceleration of

an FLS in different scenarios based on a constant acceleration and

deceleration model.

With Scenario 1, an FLS may accelerate with the rate of 𝑎↑′,

𝑎↑′ =
𝑆2
𝑠𝑙𝑜𝑡

2𝑑
. It will reach speed of 𝑆𝑠𝑙𝑜𝑡 by the time it rendezvous

with its assigned slot.

With Scenario 2, the time that an FLS may accelerate is 𝑡↑,
𝑡↑ = 2(𝑇 − 𝑑

𝑆𝑠𝑙𝑜𝑡
). Hence the acceleration 𝑎↑′ can be calculated

accordingly, 𝑎↑′ = 𝑆𝑠𝑙𝑜𝑡
𝑡↑

. Once it reach the speed of 𝑆𝑠𝑙𝑜𝑡 , it will

move with this constant speed and

For Scenario 3, there are multiple ways an FLS can do to achieve

the goal. An FLS maximize its accelerating time 𝑡↑ and later have

a longer decelerating time 𝑡↓, or the opposite, or choose a balance
between these two. There are three constraints on 𝑡↑ and 𝑡↓:

𝑇 ≥ 𝑡↑ + 𝑡↓ (2)

𝑑 =
𝑆 ′𝑚𝑎𝑥 𝑡

↑

2

+ (𝑆
′
𝑚𝑎𝑥 + 𝑆𝑠𝑙𝑜𝑡 )𝑡↓

2

+ (𝑇 − 𝑡↑ − 𝑡↓)𝑆 ′𝑚𝑎𝑥 (3){
𝑆 ′𝑚𝑎𝑥 ≤ 𝑎↑𝑡↑

𝑆 ′𝑚𝑎𝑥 ≤ 𝑎↓𝑡↓ + 𝑆𝑆𝑙𝑜𝑡
(4)

Here, we provide the equation for calculation with a focus on min-

imizing the accelerating time 𝑡↑ and the decelerating time 𝑡↓ by
using 𝑎↑ and 𝑎↓ for acceleration and deceleration. Equation 3 can

be re-formalized as:

𝑑 =
𝑆 ′2𝑚𝑎𝑥

2𝑎↑
+ (𝑆

′2
𝑚𝑎𝑥 + 𝑆𝑠𝑙𝑜𝑡 )

2𝑎↓
+ (𝑇 − 𝑆 ′𝑚𝑎𝑥

𝑎↑
− 𝑆 ′𝑚𝑎𝑥

𝑎↓
)𝑆 ′𝑚𝑎𝑥 (5)

and 𝑆 ′𝑚𝑎𝑥 can be calculated accordingly:

𝑆 ′𝑚𝑎𝑥 =
𝑇 −

√︃
𝑇 2 − ( 1

𝑎↑
+ 1

𝑎↓
) ( 𝑆𝑠𝑙𝑜𝑡

2𝑎↓
− 𝑑)

1

𝑎↑
+ 1

𝑎↓

(6)

3 IMPLEMENTATION
We developed a simulation model of the techniques and imple-

mented them using a swarm of Crazyflie drones. We specified a

horizontal circular flight pattern with a radius of 1 meter, 𝑅=1, 𝜃=0.

It rotates counter-clockwise. The speed of its slots is 0.7𝑚/𝑠𝑒𝑐𝑜𝑛𝑑 .
The slots are separated by a distance of 125.66 cm (

2𝜋×1𝑚
5

) and are

1.79 seconds apart. The diameter of a Crazyflie is 15 cm (including

span of propellers).We set its maximum speed 𝑆𝑚𝑎𝑥 at 1.5 m/second,

and maximum acceleration and deceleration at 1𝑚/𝑠𝑒𝑐𝑜𝑛𝑑2. The
dimensions of the space is 3𝑚 × 3𝑚 × 1.5𝑚, and the opening is

27𝑐𝑚 × 27𝑐𝑚. Figures 3a and 3b show the side and bottom view of

the opening of our implementation. A visualization of the simula-

tion model is shown in Figure 4.

Our implementation starts with 5 Crazyflies at a stationary state

on the ground. They fly to 5 random initial coordinate. Each drone

is assigned with available slots using a Round Robin policy. We use

the equations of Section 2.2.2 to compute the shortest path for each

FLS to occupy its assigned slot, starting with the speed of zero.

The sudden turns when FLSs are rendezvousing with their as-

signed slots are handled by crazyswarm platform [66].
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Once an FLS rendezvous with its assigned slot, it occupies the

slot and flies at the speed of the slot until it is below the opening.

Subsequently, it enters the opening an relinquishes its slot. The

FLS flies to a corner of the display space, descends to the floor, and

flies to its newly assigned random starting position to repeat the

process. An experiment has a duration of one minute. It terminates

by landing the 5 FLSs on the ground. See implementation.

4 EVALUATION
We used the experimental setup of Figure 6 to quantify the tradeoff

associated with SD and FRT, Algorithms 2 and 3, respectively. The

important configuration parameters of the flight pattern include its

radius 𝑅=1 meter, the speed of slots 0.7 m/second, and the number

of slots 5. We simulated starting point for one FLS along a line

that is a fixed distance below the center of the flight pattern. This

distance is a function of the radius of the flight pattern, 𝜔 × 𝑅. We

vary the value of 𝜔 from 1 to 1000 including in between values.

The distance between the points on the line is fixed at 1 meter, i.e.,

Point 10 is 9 meters away from Point 1 which is aligned below the

center of the flight pattern. See Figure 6.

Figure 6: Experimental setup.

Summary of lessons: We conducted many experiments. A summary

of lessons learned include: First, SD results in a shorter travel dis-

tance compared to FRT while FRT results in a faster rendezvous

time when compared with SD. Second, the difference between SD

and FRT becomes insignificant as we increase the distance between

an FLS and its assigned slot, i.e., 𝜔 ≥ 100. Third, minimizing the

time for a slot to make a rotation on the flight pattern expedites

the FLS rendezvous time with an FLS. Similarly, increasing the FLS

speed, its acceleration and deceleration expedites its rendezvous

time with an FLS. Fourth, with SD, the shortest distance may be

such that an FLS arrives at the rendezvous point and misses its

assigned slot. In this case, the FLS must wait for one rotation of the

slot, delaying the rendezvous time. See Figure 7b.

Table 1 shows the numerical results of distance traveled and

time spent by FLS starting at point 1, assigned with Slot 2, different

values of 𝜔 .

Detailed Results: The experimental results presented in this section

use a flight pattern with the specification of Example 1 and our

Crazyflie implementation of Section 3.

Figure 7a shows the percentage improvement in distance pro-

vided by SD when compared with FRT. The x-axis of this figure

Table 1: Traveled distance and rendezvous time, SD and FRT.

𝜔
Dist Traveled (m) Time (second)
SD FRT SD FRT

1R 1.00 1.40 9.43 1.87

5R 5.00 5.38 9.43 4.57

10R 10.00 10.06 9.43 7.70

100R 100.00 100.02 72.27 67.67

1000R 1,000.00 1,000.00 673.67 673.67

(a) SD’s % improvement in distance when compared with FRT.

(b) FRT’s % improvement in time when compared with SD.

(c) Rendezvous time with different slot assignments, SD, 𝜔=5.

Figure 7: An evaluation of SD and FRT.
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denotes the points on the line below the flight pattern. An FLS is

assigned Slot 2. (We discuss other slots at the end of this section.)

SD’s highest percentage improvement is observed with low values

of 𝜔 (e.g., 𝜔=1), i.e., when the line is closest to the flight pattern.

This improvement decreases as we increase 𝜔 . Beyond 𝜔 ≥ 10, the

percentage improvement provided by SD is insignificant because

the traveled distance is large. This distance dominates to make the

difference between the closest 𝑃𝑐𝑙𝑜𝑠𝑒 and farthest 𝑃𝑓 𝑎𝑟 point (fixed

at 2R) on the flight pattern insignificant.

Figure 7b shows the percentage improvement in time by FRT

when compared with SD as a function of the points on the line. The

different lines correspond to the different values of 𝜔 .The percent-

age improvement provided by FRT decreases as a function of𝜔 with

a few exceptions. The percentage decrease is due to an increase in

the distance traveled by the FLS. SD requires the FLS to fly at the

fastest speed similar to FRT. With sufficiently large distances, the

rendezvous time to the closest point versus to a point between the

closest and farthest points on the flight pattern becomes insignifi-

cant. This explains the decrease in percentage improvement as a

function of 𝜔 . This explanation also applies to the general decrease

of a line, say 𝜔 = 1, as a function of the points on the line. Point

10 is 10x farther away than Point 1, rendering the aforementioned

different insignificant.

Figure 7b shows sudden jumps in the percentage improvement

with 𝜔 values 7 and 10. This is due to an FLS arriving at its ren-

dezvous point 𝑃𝑐𝑙𝑜𝑠𝑒 only to miss its assigned slot. The FLS waits

for the slot to make a full rotation. This results in a significant

increase in rendezvous time with SD. Note that SD requires the FLS

to travel at its fastest speed. Reducing its speed will only increase

the percentage improvement provided by FRT.

The slot assigned to an FLS dictates whether it must wait for a

rotation of the slot. Figure 7c highlights this by focusing on 𝜔=5.

It shows the time to rendezvous for different slots on the flight

pattern as a function of the FLS location on the line, i.e., points

shown in Figure 6. While with Slots 1, 2, and 5, the rendezvous

time is a line that decreases smoothly and tends to flatten out, it

increases with Slots 3 and 4 due to an FLS waiting for either a full

or a partial rotation of its slot.

Figure 8: 97 collision avoidance/handling studies.

Table 2: A summary of FRT and variants of SD.

Distance Flight Battery
Traveled Time Flight Time

SD:V1 Optimizes Optimizes

SD:V2 Optimizes

SD:V3 Optimizes Optimizes

FRT Optimizes

5 RELATEDWORK
The concept of flight patterns for use by a Dronevision is first

introduced in [107]. It presents alternative shapes for a flight pattern,

e.g., square, circle, and ellipsoid. It also describes flight patterns

that are either single layer or hierarchical. We focus on the circular

pattern of [107] and extend it by presenting different angles 𝜃 for

a flight pattern relative to the Z-axis, and algorithms SD and FRT

that enable an FLS to rendezvous with its assigned slot on the flight

pattern. We present analytical models, simulation studies, and an

implementation using a swarm of Crazyflie drones. These novel

extensions are absent from [107].

Our novel extensions are absent from prior studies in collision

handling techniques. This is based on our survey of 97 studies that

were published from 1983-2024 . Figure 8 shows the six forms of

collisions as a function of the publication year. The size of a circle

and its darkness denotes the number of studies, ranging from 1 to 6.

48 studies compute an alternative path [10, 11, 14, 18, 19, 22, 23, 28–

32, 34–36, 38, 40, 42, 45, 47–49, 52, 57, 58, 62, 68, 72, 74, 78, 80, 82,

84, 85, 87, 90, 92, 95–97, 99, 100, 102–105, 108], 21 studies fly around

the collision point [3, 12, 15, 17, 21, 23, 24, 27, 43, 44, 53, 66, 67, 71,

76, 77, 83, 86, 91, 93], 26 studies adjust velocity [17, 20, 21, 23, 27, 28,

30, 38, 43–45, 51, 52, 54, 64, 67, 72, 76, 79, 80, 83, 86, 91, 93, 97, 99],

27 studies employ a swarming technique [1, 2, 5–8, 12, 16, 20, 25, 30,

31, 33, 39, 55, 59, 63, 65, 66, 73, 88, 89, 98, 101, 105–107], 6 studies

use controlled collision [46, 51, 54, 56, 61, 64], and 1 study switches

destination of the colliding agents [76]
2
.

We also analyzed more recent papers related to drone swarm

managements [9, 69, 70, 75]. None have the concept of a flight

pattern, SD and FRT algorithms.

6 CONCLUSION
This paper presents the design and implementation of a circular

flight pattern that enables a swarm of FLSs to enter an opening of

a 3D multimedia display, Dronevision. This opening provides FLSs

with access to charging coils. We presented two novel algorithms,

SD and FRT, that enable an FLS to occupy its assigned slot with the

flight pattern at an arbitrary angle 𝜃 relative to the z-axis. The 3

variants of SD optimize for different metrics as shown in Table 2.

One may view Variant 1 of SD as a hybrid of FRT that prioritizes

optimizing traveled distance followed with travel time. Experimen-

tal results show SD minimizes the distance traveled by an FLS

while FRT minimize the time traveled. Our implementation using a

swarm of Crazyflie drones validates the correctness of our designs.

Both our design and implementation scale to a large number of

drones and slots. While we focused on a 3D multimedia display, the

2
Total is 129 since a study overlaps multiple categories.
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concept of a flight pattern and our algorithms are flexible for use

by other applications that require a swarm of drones to fly through

an opening.
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